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CHAPTER 1: PROJECT INTRODUCTION 

 The leading cause of death in the US and worldwide result from cardiovascular diseases 

such as myocardial infarction (MI), that due to the lack of cardiac tissue regeneration or repair 

often leads to death. In contrast to the tissue response in humans and other mammals after 

injury, non-mammalian vertebrate species such as the axolotl (Ambystoma mexicanum) and 

zebrafish (Danio rerio) exhibit increased regenerative capacity for limbs and other organs, 

including the heart. With the recognized limitations of pharmacotherapy of myocardial infarction 

(MI) in human patients, cell-based therapies have been undergoing rapid development and 

clinical testing. However, there is still no consensus about cell types, delivery routes, dosing and 

treatment schedules and pretreatment conditioning of cells prior to administration. This lack in 

understanding the mechanisms behind the cell-cycle of cardiomyocytes and or cardiac progenitor 

cells, both during times of normal homeostasis and after pathologic insults, is central to the lack 

of progress in stimulating the regeneration of cardiac tissue. To understand the differences in 

cardiac tissue response after an MI, developing a true model of ischemia-reperfusion injury in an 

animal known for epimorphic regeneration in the adult life stage will help reframe the direction 

of research in the field of tissue engineering and regenerative medicine in the realm of 

cardiology. 
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CHAPTER 2: PROJECT SUMMARY & HYPOTHESIS 

 Multiple studies using non-mammalian vertebrates have been published showing cardiac 

tissue regeneration and remodeling after traumatic cardiac injury, but the methods described to 

induce cardiac tissue trauma and necrosis do not recapitulate the cellular mechanisms that are 

well-known in ischemia-reperfusion injury. With challenging access to coronary arteries in the 

zebrafish (Hu et al., 2001) to the lack of coronary arteries in salamanders (Francis, 1934), 

surrogate injury modalities have been used to injury the heart in these laboratory animals. The 

more commonly used injury methods include: cryoinjury, conditional genetic ablation, and 

ventricular (apical) resection. Although these injuries can occur in human patients, the 

conclusions from these experiments cannot be broadly applied to all cardiac injuries. Thus, with 

the literature published to date, it is yet to be concluded whether an adult vertebrate animal can 

recover from an ischemia-reperfusion injury to the heart. 

 Although little to no publications on cardiac tissue response after ischemia-reperfusion 

injuries are available in non-mammalian vertebrates, there is overwhelming evidence regarding 

the regeneration capabilities of salamanders. Salamanders are known to regenerate almost any 

organ or limb throughout their lifespan(Roy and Gatien, 2008). From these conclusions, the 

following hypothesis is proposed: 

“The axolotl, an animal capable of healing damaged organs and limbs throughout 

its lifespan through the process of epimorphic regeneration, can regenerate a 

cardiac ischemia-reperfusion injury as an adult.” 

 To understand how the axolotl heart responds to an ischemia-reperfusion injury that 

recapitulates a myocardial infarction, this research project focused on two Specific Aims, 
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discussed in CHAPTER 3: SPECIFIC AIMS. The results of the two Specific Aims show that following 

an ischemia-reperfusion injury, the axolotl heart can clear necrotic cardiac tissue from the injury 

site and replace it with nascent myocardium. The spatiotemporal process that is observed in 

histological preparations show an evolving injury that is unlike the repair and regeneration 

process described in zebrafish and mammals. These findings provide new and exciting avenues 

of exploration to elucidate the molecular signaling mechanisms responsible for cardiac repair in 

the axolotl with the goal of translating these findings to human patients. 
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CHAPTER 3: SPECIFIC AIMS 

 From the late 1950s, the age-adjusted death rate due to diseases of the heart has fallen 

from almost 600 deaths per 100,000 U.S. residents to just over 190 deaths per 100,000 U.S. 

residents today. With the recognized limitations of pharmacotherapy of myocardial infarction 

(MI), cell-based therapies have been undergoing rapid development and clinical testing. 

However, there is still no consensus about: 1) the most appropriate cell type; 2) the most 

appropriate delivery routes; 3) the effective doses and treatment schedules; and 4) genetic 

modifications and/or pretreatment conditioning of cells (e.g. drugs, growth factors, cytokines) 

prior to administration. Furthermore, several fundamental questions about cardiac tissue 

regeneration remain unanswered. Specifically, what is the reason for the poor capacity for tissue 

regeneration and remodeling in humans (mammals in general), as compared to robust 

regeneration seen in non-mammalian vertebrates, such as the axolotl (Ambystoma mexicanum) 

and zebrafish (Danio rerio)? Can cellular processes and regulatory mechanisms involved in axolotl 

heart regeneration be exploited and reactivated in the injured human myocardium to treat 

sequelae of MI? The lack of understanding cell-cycle regulation governing cardiomyocyte growth, 

division, and proliferation, both in normal and pathologic states, is a major hurdle in 

understanding the regenerative potential in cardiac tissue. By comparing the response to injury 

in animals that show a robust regenerative response, details behind cardiomyocyte and cardiac 

progenitor biology in mammals can be dissected. The central hypothesis that continues to remain 

unanswered in the field of cardiac regenerative biology is can an ischemic cardiac injury be fully 

regenerated in an adult vertebrate animal, without the aid of external genetic manipulation or 

administration of cell-based therapies. 
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 Observations from recent pre-clinical animal studies and clinical trials of stem cell-based 

therapies of MI have so far left unchanged conclusions made in the late 1970s by Dr. Pavel P. 

Rumyantsev: “The lack of unanimity concerning the extent of cardiac muscle regeneration and 

its mechanisms in orthodox histological studies obliges us to describe in more detail data based 

on the use of modern cytological methods”. Therefore, the major goal and innovative aspect of 

this project is to determine if a true ischemic cardiac injury can be fully regenerated in an adult 

animal that is capable of epimorphic regeneration. To this end, we will pursue the following 

Specific Aims: 

 Specific Aim 1: Develop a cardiac injury model in the axolotl that mimics the 

pathophysiology of a myocardial infarction in the mammalian heart. Past studies in zebrafish 

and axolotls have used cardiac injury models that do no recapitulate cardiac ischemia. We will 

pursue the development of a true ischemic cardiac injury model in the axolotl that, when 

performed in a mammalian model, produces similar pathology to a left anterior descending 

artery ligation. As part of the surgical procedure development, all pre-, peri-, and post-operative 

animal care and welfare must be established. 

 Specific Aim 2: Determine the spatiotemporal progression of axolotl cardiac tissue 

histopathology over time. Following the development of the pre-, peri-, and post-operative 

procedures to enable appropriate animal welfare after major survival surgery, long-term follow-

up experiments will provide information on the spatiotemporal processes that occur after an 

ischemic cardiac event in the axolotl. Non-invasive, functional imaging will allow periodic tracking 

of cardiac function over time. 
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CHAPTER 4: BACKGROUND AND LITERATURE REVIEW 

Background and Significance of Cardiovascular Disease 

 In spite of the steady improvement in heart failure therapy (Jakob and Landmesser, 2013), 

cardiovascular disease still ranks as the number one cause of death in the US (Murphy et al., 

2013; Xu et al., 2016) and worldwide (Organization, 2017). With the recognized limitations of 

current pharmacological supportive care for myocardial infarction (MI), cell-based therapies have 

been undergoing rapid laboratory bench work development and clinical bedside testing. 

 Initial work in cell therapy started with the transplantation of skeletal myoblasts in rats 

and rabbits (Murry et al., 1996; Taylor et al., 1998; Taylor et al., 1997). However, since skeletal 

muscle cell ultrastructure (Kijima et al., 1993) and physiology (Lilly, 2011) greatly differs from that 

of cardiomyocytes, such as the requirement in cardiomyocytes of an extracellular influx of 

calcium to promote calcium-induced calcium release (CICR) excitation-contraction coupling 

(Fabiato and Fabiato, 1979), problems of arrhythmogenesis damped progress (Abraham et al., 

2005; Fernandes et al., 2006; Menasche et al., 2008). Excitement for cell-based therapy 

reemerged in 2001 (Jackson et al., 2001; Orlic et al., 2001) after it was reported that in mouse 

models of myocardial ischemia cardiac side population cells [a subtype of cardiac stem cells 

(Ellison et al., 2010; Jackson et al., 2001)] and bone marrow cells (Orlic et al., 2001) generate new 

myocardium de novo by differentiating into cardiomyocytes (CMs). Extending this excitement 

was modern histological confirmation for human cardiomyocyte proliferation after myocardial 

infarction (MI) (Beltrami et al., 2001). These studies provided the basis of using adult stem cells 

as a new mode of therapy for repairing pathologic cardiac tissue either by stem cells 

differentiating into new cardiomyocytes or facilitating the self-repair of damaged 
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cardiomyocytes. The safety and feasibility of using adult stem cells to stimulate cardiac 

regeneration in animal models of myocardial ischemia led to the first in-man feasibility study 

documented in a case report in 2001, proving that intracoronary administration of autologous 

bone marrow cells could be used to regenerate myocardium after an MI (Strauer et al., 2001). 

 Contrasting these results, other studies soon pointed out that these hematopoietic stem 

cells adopt mature hematopoietic fates in damaged myocardium (Balsam et al., 2004; Murry et 

al., 2004); transdifferentiation of bone marrow stem cells does not unanimously account for 

cardiac tissue regeneration. Other mechanisms proposed for cardiac regeneration through cell-

based therapy include: nuclear reprogramming of damaged tissue by fusion (Nygren et al., 2004; 

Yang et al., 2012) or the rescue of damaged tissue by paracrine factors (Gnecchi et al., 2008; 

Segers et al., 2007). Conversely, other studies found that facilitating the repair of damaged tissue 

is not the mechanism, rather the stimulation of endogenous cardiac precursors to create new 

myocardium leads to cardiac repair (Limana et al., 2007; Loffredo et al., 2011). 

 The lack of consensus for the mechanisms behind cardiac repair (Lovell and Mathur, 2010) 

as a barrier to progress is not a new insight. The idea that cardiac tissue can regenerate was first 

observed in rabbits and frogs in 1875 by Zielonko (Zielonko, 1875). Recent studies in 1-day versus 

7-day old neonatal mice (Haubner et al., 2012; Porrello et al., 2011) reconfirmed experiments 

from the early 1900s [reviewed in (Rumyantsev, 1977)] that cardiac damage can be perfectly 

remodeled when performed on neonatal animals. However, if the same injuries are performed 

on slightly older animals, the heart reverts to healing by scarring mechanisms found in adults. 

Thus, the argument can be made that the genetic programs for cardiac repair exist within adult 

mammalian DNA, but are somehow repressed. Although this is a logical deduction, what has not 
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been confirmed is that early, adult vertebrate animals can completely regenerate their hearts 

through epimorphosis, fully recovering the original structure and function of the heart. Although 

prior studies in non-mammalian vertebrates like zebrafish and newts have given researchers 

hope that cardiac injuries can fully recovery after severe injury, studies to date have not 

confirmed this ability in a true model of cardiac ischemia. 

Is Cardiac Tissue Regeneration and Repair in Humans Even Possible? 

 The proverbial “elephant in the room” in cardiovascular disease research is the argument 

that the heart is a post-mitotic organ, incapable of healing itself after it is injured. In this 

discussion of the background and literature review on cardiac muscle repair, discussing this long-

held dogma will take priority before delving into the clinical relevance of regenerating native 

human heart tissue. 

 The heart has traditionally been considered a post-mitotic organ (Anversa et al., 1986; 

Anversa et al., 1990; Barja and Herrero, 2000; Korecky and Rakusan, 1978; Pollack et al., 2002), 

mainly due to the historical acceptance that little or no cardiac tissue is replaced during normal 

aging, or repaired after injury or secondary to cardiac dysfunction (e.g. cardiac myopathies). If 

heart tissue inherently lacks the ability to divide, proliferate, or show any other signs of cellular 

dynamics, then advancing research within the field of regenerative medicine for cardiac tissue 

would not be realistic or rational. However, since the first question arouse about the post-mitotic 

state of the mammalian heart in the early 1990s (Rumyantsev and Carlson, 1991), evidence has 

been accumulating that the mammalian heart retains the capability to renew cardiomyocytes 

during the life of the animal; otherwise, any remaining cardiomyocytes in the heart would be 

present from birth, be the same age as the individual, and any cardiomyocytes lost with age or 
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as a consequence of disease would not be replaced. Still, although the evidence has been 

identified, the magnitude of cardiomyocyte cellular dynamics in rodents and human is highly 

debated, ranging from less than a 1% rate of cardiomyocyte renewal per year in adult mammals 

up to a rate of 40% in humans or 80% in mice [reviewed in (Bergmann and Jovinge, 2014)]. 

 The debate behind the rate of cardiomyocyte renewal revolves around the assumptions 

made about cardiomyocyte cellular dynamics, the methodologies used to identify proliferating 

and dividing cardiomyocytes, and the origin of new cardiomyocytes (if new cardiomyocytes are 

even formed). Supporting the idea that the heart is a dynamic organ was the identification of 

apoptotic (Cheng et al., 1995; Narula et al., 1996; Olivetti et al., 1997; Olivetti et al., 1996) and 

necrotic myocytes (Collinson and Gaze, 2007; Kajstura et al., 1996; Mahajan and Jarolim, 2011; 

Omland et al., 2009) in aging and failing hearts. In relation to cellular dynamics, to quantify the 

extent of cardiomyocyte turnover, what is required is the frequency of cell death and the 

duration of the apoptosis-necrosis cell phenotype. The wide range in estimates of cellular 

turnover are exacerbated by the ongoing disagreement concerning the frequency of occurrence 

of apoptosis, necrosis, oncosis, and autophagy within the heart (Anversa and Kajstura, 1998; 

Kostin et al., 2003). Additionally, there is currently no consensus on the timeframe of the 

apoptosis-necrosis sequence in cardiomyocytes, with estimates ranging from a few hours to a 

few days (Bergmann and Jovinge, 2014; Rodriguez and Schaper, 2005). 

 Compounding the lack of consensus in cardiomyocyte cellular dynamics, the biochemical 

methods used to quantify the number of cells proceeding through various cellular phenotypes 

have also been heavily criticized. DNA fragmentation during apoptosis can be identified through 

DNA gel electrophoresis, the TUNEL (Terminal Deoxynucleotidyl Transferase dUTP Nicked-End 
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Labeling) assay, or the Taq polymerase-mediated in situ ligation assay (Takemura et al., 2013). 

However, DNA fragmentation in and of itself is not a specific indicator of apoptosis; necrosis and 

aspects of normal cellular behavior such as DNA repair and RNA synthesis result in 

oligonucleosomal DNA fragmentation or DNA nicks (Bergmann and Jovinge, 2014; Takemura et 

al., 2013). Similarly, caspases are important signals in the apoptosis cascade (Cohen, 1997; 

Earnshaw et al., 1999) and measuring their activation can quantify the magnitude of apoptosis. 

However, caspases also function as secondary signals in cellular proliferation, cellular 

differentiation, cell-cycle regulation, and cell-survival pathways (Takemura et al., 2013). To date, 

no biochemical markers definitively pinpoint a cell undergoing apoptosis with complete 

specificity; only morphological observations of the cellular phenotype can incontrovertibly 

identify an apoptotic cardiomyocyte. Surprisingly, since the identification of apoptotic myocytes 

in the mid-1990s (Cheng et al., 1995; Narula et al., 1996; Olivetti et al., 1997; Olivetti et al., 1996), 

not one cardiomyocyte expressing the ultrastructural morphology that defines apoptosis has 

been identified in a failing human heart or in animal models of heart failure (Takemura et al., 

2013). 

 In parallel to the problems of published methods to biochemically assess apoptosis, 

controversies remain when assessing the extent of cardiomyocyte proliferation. The most 

common tools used to study cardiomyocyte proliferation are immunohistochemical markers of 

DNA synthesis using antibodies against the Ki-67 nuclear and nucleolar protein (Duchrow et al., 

1995; Endl and Gerdes, 2000; Gerdes et al., 1984; Scholzen and Gerdes, 2000) or the 

phosphorylation of Ser10 on histone 3 (H3 phosphorylation into pH3) (Goto et al., 1999; Gurley et 

al., 1973; Hendzel et al., 1997). However, taking snapshots of a cell cycle with an unknown 
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timescale and preparing slices of tissue with an unknown frequency of proliferating cells in the 

organ at large are major a priori limitations in estimating the frequency and magnitude of 

proliferating cells. Additionally, it is not guaranteed, based on the presence of these proliferation 

markers, if the cell will divide into two daughter diploid cardiomyocytes or form a single polyploid 

or multinucleated cardiomyocyte (Bergmann and Jovinge, 2014; Bergmann et al., 2015). 

Furthermore, if renewed cardiomyocytes are partially (or fully) derived from the differentiation 

of cardiac stem or progenitor cells, the proliferating cell population that eventually will contribute 

to mature cardiomyocytes will not be identified by the co-staining used to identify cycling cells 

within the heart that express a cardiomyocyte lineage. This will severely underestimate the rate 

of cardiomyocyte cellular dynamics. In this regard, rather than indicating a phase in mitosis [e.g. 

Ki-67 for G1, S, G2 and M-phase or phosphorylated histone 3 for M-phase (Senyo et al., 2014)] 

birth markers that are incorporated into the newly synthesized DNA of proliferating 

cardiomyocytes or cardiomyocyte progenitors are required to “chase” the lineage commitment 

of the daughter cell, prompting the use of thymidine analogs to prospectively label proliferating 

cells. Thymidine analogs such as tritiated thymidine, halogenated bromodeoxyuridine (BrdU), 

and iododeoxyuridine (IdU) are commonly used in animal models, but their use in humans 

outside of sensitizing tumors to radiation therapy (BrdU and IdU) (Kinsella et al., 1987; Kinsella 

et al., 1984) is challenging. Although these birth-marker experiments have provided insight into 

cardiomyocyte cellular dynamics in model animals and humans (as a consequence of the 

treatment of underlying cancers), the use of halogenated pyrimidine analogs are not immune 

from confounds relying upon the detection of a fluorescent signal from a secondary antibody 

against the specific, primary antibodies against BrdU and IdU; the autofluorescence of 
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myocardium complicates any method relying upon fluorescence detection (Steinhauser and Lee, 

2011). Furthermore, although these birth markers label more than just a phase of the 

cardiomyocyte in mitosis, they still label a subset of cells within the heart that rarely undergo 

cellular proliferation, making the choice of tissue section an important aspect in determining 

dynamics on the cellular level. Finally, the use of nucleotide analogs to label cells undergoing DNA 

synthesis is not specific to the process of semiconservative DNA replication – it also occurs during 

DNA repair. Semiconservative DNA replication is also not specific to one process – only an 

indicator of S-phase cell cycle progression. Without additional markers, nucleotide incorporation 

assays cannot differentiate between cells undergoing polynucleation, polyploidization, or cells 

that will simply stop at the G2/M checkpoint (Leone et al., 2015). 

 More recently, a novel method has been established to retrospectively birth-date 

cardiomyocytes by comparing levels of 14C within their DNA to atmospheric levels of 14C. This 

method, relying upon the spike of atmospheric 14C levels from above-ground testing of nuclear 

weapons prior to the Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space 

and under Water (abbreviated as the Partial Test Ban Treaty) of 1963, treats the time of increased 

nuclear testing as the DNA labelling pulse with the period following the ban as the “chase” 

(Spalding et al., 2005). The levels of 14C since 1963 have been carefully studied, and given the 

half-life of 14C (t½ = 5730 years), the decrease in [14C] is attributed not to its radioactive decay, 

but its diffusion into the biosphere. A seminal study of the application of this technique to 

cardiomyocytes was first published in 2009 (Bergmann et al., 2009) and extended with the 

addition of stereologic techniques in 2015 (Bergmann et al., 2015), concluding that 

cardiomyocyte turnover decreases exponentially with age – young children were shown to have 
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cardiomyocyte birth rates of 4-5% per year, while by 20 years of age, adults were shown to have 

a turnover rate of <1% per year. However, although this technique relies on the stability of DNA 

after a cell has performed its last cellular division (Bergmann et al., 2009; Spalding et al., 2005), 

cell preparation for analysis can lead to confounding factors. To analyze cardiomyocyte nuclei 

using the method developed by Spalding et al. (Spalding et al., 2005), tissue must be digested 

and the cardiomyocyte nuclei sorted using fluorescence-activated cell sorting (FACS) technology. 

Not only do the aforementioned issues of using appropriate lineage markers to identify 

proliferating cardiomyocytes and/or cardiac progenitors and the autofluorescence of elastin, 

collagen, and lipids (Marcu, 2010) found in the matrix of myocardial tissue (Sullivan et al., 2014) 

affect this approach, but any contamination that remains after the digestion and isolation of 

cardiomyocyte nuclei can introduce bias into the analysis (Steinhauser and Lee, 2011). 

 In addition to the controversy over the rate of cardiomyocyte dynamics within the adult 

mammalian heart, there is an ongoing debate about the cellular source responsible for 

cardiomyocyte turnover in adult mammals, with groups publishing data championing on the one 

hand cardiac stem or progenitor cells (Bollini et al., 2011; Ellison et al., 2013; Hsieh et al., 2007; 

Mayfield et al., 2014; Nadal-Ginard et al., 2014; Smart et al., 2011) and on the other hand pre-

existing cardiomyocytes (Ali et al., 2014; Engel, 2005; Mollova et al., 2013; Porrello et al., 2013; 

Senyo et al., 2013; van Berlo et al., 2014; van Berlo and Molkentin, 2014; Zacchigna and Giacca, 

2014). Reviews assessing the literature at large attribute the disparate experimental materials 

and methods as an underlying cause of the ongoing controversy, with groups using different 

animals and dissimilar approaches for performing the genetic-fate mapping studies to discern 

the origin of cardiomyocyte renewal (Milasinovic and Mohl, 2015; van Berlo and Molkentin, 
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2014). Recently, a new consensus is beginning to emerge, allowing for the contribution of both 

sources of cells to play a role in cardiomyocyte cellular dynamics; during homeostasis, 

cardiomyocyte turnover may occur predominantly through the proliferation of pre-existing 

cardiomyocytes, while after injury, cardiac stem and progenitor cells are engaged alongside pre-

existing cardiomyocytes to repair lost or damaged myocardium (Bergmann and Jovinge, 2014; 

Malliaras et al., 2013; Senyo et al., 2014). 

 Although the field is slowly converging, what is clear from the literature is that the heart 

can no longer be viewed as a post-mitotic organ full of quiescent cardiomyocytes, an idea called 

into question decades ago (Rumyantsev and Carlson, 1991) and proven with modern cytological 

studies. What can be concluded is that the low-rates of cardiomyocyte turnover are insufficient 

to repair the approximately one billion cardiomyocytes that are typically lost after an MI 

(Frangogiannis, 2015; Laflamme and Murry, 2005). With clear evidence of full regeneration after 

extensive injury in the hearts of non-mammalian vertebrates [such as zebrafish and newts 

(Becker et al., 1974; Oberpriller and Oberpriller, 1974; Poss et al., 2002)] and neonatal mice 

(Haubner et al., 2012; Porrello et al., 2011), momentum is moving the field of cardiac 

regeneration towards the promise that the adult mammalian heart can endogenously repair itself 

with functioning, well-integrated, de novo cardiomyocytes. In summary, the adult mammalian 

heart shows dynamic cell turnover, so therefore it is rational and realistic to continue to foray 

into the field of regenerative medicine for cardiac tissue, elucidating the mechanisms behind the 

cell-cycle control of both healthy and damaged cardiac tissue to provide a better understanding 

on how to enable the self-repair of damaged myocardium. 
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Cardiac Injury Models 

 Salamanders, including axolotls, have been extensively studied as model organisms for 

tissue regeneration (Brockes, 1997; Cano-Martinez et al., 2010; Chalkley, 1954; Hay and 

Fischman, 1961; Khattak et al., 2013; Monaghan and Maden, 2012; Neff et al., 1996; Rose, 1948; 

Rose and Rose, 1952; Roy and Gatien, 2008; Simon, 2012; Singh et al., 2010; Sobkow et al., 2006; 

Voss et al., 2009; Whited and Tabin, 2010; Whited et al., 2013). Older studies observed gross 

changes in anatomy and histology (Chalkley, 1954; Hay and Fischman, 1961; Rose, 1948) ; more 

recently, regeneration has been examined using modern molecular tools (Khattak et al., 2013; 

Monaghan and Maden, 2012; Sobkow et al., 2006; Whited et al., 2012; Whited et al., 2013). The 

standard approach to induce repeatable and reproducible ischemic damage in a rodent is to 

perform a left anterior descending (LAD) coronary artery ligation to effectively recapitulate the 

pathogenesis of an atherosclerotic infarction in a human (Salto-Tellez et al., 2004; Wang et al., 

2006). However, performing the same procedure is impossible in amphibians. Phylogenetically 

less evolved, amphibians have trabeculated ventricular myocardium (Stocum, 2006). Instead of 

relying upon coronary arteries to nourish the beating ventricular myocardium, oxygen and 

nutrients in the blood infiltrate the numerous sinuses formed by the myocardial trabeculations 

(Reese et al., 2002; Stocum, 2006). Therefore, for purposes of translating the findings in the 

axolotl to mammalian species, developing an identical approach to inducing myocardial ischemia 

in both animals is paramount to the success of this plan of work. 

 To induce cardiac injury in model animals without coronary arteries, methods such as 

cryoinjury/cryoablation (Gonzalez-Rosa et al., 2011; van den Bos et al., 2005), diphtheria-toxin 

conditional genetical ablation (Akazawa et al., 2004; Wang et al., 2011), or apical resection 
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(Porrello et al., 2011; Poss et al., 2002) have been implemented. Although these approaches 

result in serious cardiac tissue trauma or reduction in cardiac function, the injury processes do 

not recapitulate the pathogenesis of cellular dysfunction akin to ischemia-induced or ischemia-

reperfusion-induced cardiac tissue necrosis. Although gross tissue histology may not dramatically 

differ from healing infarcted tissue, signaling mechanisms responsible for cell death are different. 

Injury Due to Ischemia and Ischemia-Reperfusion 

 The principle cellular locations and biochemical mechanisms responsible for cellular injury 

that lead to necrosis or apoptosis are: 1) mitochondrial damage leading to reductions in 

adenosine triphosphate (ATP) production and increases in the production of reactive oxygen 

species (ROS); 2) loss of calcium-ion (Ca2+) homeostasis leading to mitochondria damage and 

inappropriate activation of cellular enzymes; 3) loss of plasma and lysosomal membrane integrity 

leading to extracellular outflow of intracellular components through the damaged plasma 

membrane or the enzymatic degradation of intracellular components from the leakage of acid 

hydrolases normally sequestered in lysosomes; and 4) protein misfolding and DNA damage due 

to the loss of homeostatic intracellular conditions (Robbins et al., 2010). These general 

mechanisms of cell death are interrelated and injurious stimuli may simultaneously trigger 

multiple mechanisms, making it difficult to assign cell injury in a setting to a single dominant 

biochemical derangement or intracellular locale. However, in ischemia, the fundamental cause 

of necrosis is reduction of ATP levels (Robbins et al., 2010), causing multiple downstream effects. 

Depletion of ATP and Rise of AMP/ADP Levels 

 The loss of blood flow to the heart in ischemia affects ATP levels in two fundamental ways: 

1) a reduction in oxygen levels (hypoxia) necessary for oxidative phosphorylation of adenosine 
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diphosphate (ADP) in mitochondria and 2) a reduction in nutrients that can be oxidized by 

functioning mitochondria or processed through anaerobic glycolysis in the cytoplasm of 

myocardium. Energy stored in the phosphate of ATP is required for almost all transport 

mechanisms, biochemical syntheses, and component turnover/degradation processes within the 

cell. Unlike most tissues in the body, the heart cannot increase oxygen extraction from 

hemoglobin in the blood on demand using physics behind the oxygen-hemoglobin dissociation 

curve – at rest, left ventricular myocardial oxygen consumption is high with very efficient oxygen 

extraction (~75%) resulting a low coronary venous oxygen tension (~18 mmHg) (Tune et al., 

2004). ATP levels begin to fall within 1-2 minutes of cardiac ischemia and within 10 minutes of 

cardiac ischemia, ATP levels have dropped to 50% of normal (Lilly, 2011); notably a 5-10% drop 

in normal ATP levels lead to widespread derangements in many critical cellular systems (Robbins 

et al., 2010). 

 As ATP levels begin to wane, the activity of primary active transport systems is affected. 

Reduced activity of the sodium-potassium ATPase (ouabain-sensitive Na+, K+-ATPase) allows 

sodium ions diffusing into the cell through to accumulate and simultaneously fails to replace 

intracellular levels of potassium ions that have diffused out of the cell. In addition to these two 

cations, decreased ATP levels affect two primary active transporters that lead to the intracellular 

accumulation of calcium ions: the plasma-membrane calcium ATPase (PMCA) becomes less 

effective at moving calcium ions back to the external environment while the 

sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) becomes less responsive in 

sequestering Ca2+ in the sarcoplasmic reticulum (for the next cycle of calcium-induced calcium 

release that links electrical excitation and physical contraction). Furthermore, calcium ions are 
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further trapped inside the cytoplasm as ATP levels drop since the major calcium exporter in the 

cell is the sodium-calcium exchanger (NCX), an antiporter transport protein that exchanges three 

sodium ions for each calcium ion. Since NCX exchanges ions in opposite directions based only on 

concentration gradients, as ATP levels fall and sodium concentrations are impaired and reversed 

due to the reduced activity of the sodium-potassium ATPase, the NCX begins to import calcium 

into the cell instead of export calcium to the extracellular environment – the increased [Ca2+] also 

further activates ATPases exacerbating ATP depletion. From the standpoint of impaired non-

penetrating solute handling, the net gain of non-penetrating solute is followed by isosmotic 

movement of water, causing cellular swelling and dilation of the endoplasmic reticulum (ER). 

 Failing to produce ATP results in increases in rising levels of less energetic nucleotides 

within the cell. Without oxygen acting as the final electron receptor in oxidative phosphorylation 

(which also prevents the Krebs cycle from operating since it requires aerobic conditions - 

coenzymes NADH and FADH2 generated in the Krebs cycle need to be oxidized in oxidative 

phosphorylation, or else the falling [NAD+]/[NADH] ratio inhibits the Krebs cycle (Nelson et al., 

2017)), levels of adenosine monophosphate (AMP) and ADP begin to rise. In conjunction with the 

lack of glucose substrate delivery due to ischemia, glycogenolysis is enhanced as AMP stimulates 

glycogen phosphorylase a and b activity to break down glycogen stores. Furthermore, in 

combination with increasing levels of powerful agonists (AMP, ADP and inorganic phosphate) and 

decreasing levels of strong antagonists (ATP and citrate), the activity of phosphofructokinase is 

heavily activated and eventually becomes autocatalytic as its reaction product (fructose 1,6-

bisphosphate) is itself an antagonist of ATP and citrate inhibition of phosphofructokinase. In the 

aerobic-anaerobic transition, the rate of glycolysis increases 15- to 20-fold (Williamson, 1966). 
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Furthermore, without the Krebs cycle to consume pyruvate generated in glycolysis, pyruvate is 

reduced to lactate by lactate dehydrogenase. Lactate is the ionized form of lactic acid, so in 

solution, an increased level of lactate results in an increased equilibrium level of hydrogen ions, 

reducing the pH level inside the cell. The increasingly acidic intracellular environment leads to 

chromatin clumping, reduced enzymatic activity, and denaturation of proteins (Robbins et al., 

2010). This last mechanism can also stimulate further cell injury and even cell death due to the 

unfolded protein response (Robbins et al., 2010). 

 An additional consequence of depleting ATP levels in the cell is a decrease in protein 

synthesis. A common pool of ribosomal subunits freely floats in the cytoplasm. For any mRNA 

that encodes a cytosolic-bound protein, the ribosomal subunits assemble into complete 

ribosomes around the freely-floating mRNA. However, for polypeptide chains to form and 

elongate, tRNA must be activated through ATP hydrolysis to load the correct amino acid, forming 

an aminoacyl-tRNA that can then be used in protein translation (Alberts, 2002). Furthermore, for 

proteins that are destined for secretion or function in the lumens of the endoplasmic reticulum 

(ER), Golgi apparatus, lysosomes, or the biogenesis of membrane proteins for peroxisomes, the 

nucleus and the plasma membrane, the proteins must be synthesized while bound to the ER and 

translocated into the ER lumen (Walter and Johnson, 1994; Zimmermann et al., 2006) or 

translated into the cytosol while the ribosome remains attached to the ER translocon (Cooper, 

2000). Once the appropriate, nascent polypeptide sequence emerges from a ribosome that 

needs to be bound to the ER, the signal recognition particle (SRP) binds to both the polypeptide 

and ribosome, pausing translation while homing to the SRP receptor, an ER membrane protein 

(Walter and Johnson, 1994). From here, the ribosome and its nascent polypeptide are transferred 
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to the protein translocase for translocation across the ER membrane. The translocase protein 

consists of the heterotrimeric SEC61 membrane protein complex (α-, β-, and γ-subunits), the 

SEC62 membrane protein, and two J-domain transmembrane proteins ERj1 and SEC63. The 

SEC61 complex provides the pore for the protein to translocate, SEC62 is a stabilizing protein, 

while the two J-domain transmembrane proteins interact with the luminal protein BiP (for 

binding protein) (Zimmermann et al., 2006). BiP exhibits ATPase activity through regulation of 

two (SIL1 and GRP170) nucleotide exchange factors (NEF), effectively functioning as a ratcheting 

mechanism to pull the translating polypeptide through the translocon pore (Zimmermann et al., 

2006). Furthermore, it is proposed that ATP is required to assemble the membrane-bound 

translocase protein. Therefore, depletion of ATP in the cell reduces protein synthesis in the 

cytosol and leads to the disassembly of translocase proteins, reduced BiP ATPase activity, and 

detachment of ribosomes from the ER. Fundamentally, the synthesis of proteins for intracellular 

and extracellular use are affected when ATP levels are depleted during an ischemic event. The 

multiple effects of cell injury following ATP depletion are outlined in Figure 1, adapted from (Lilly, 

2011). 

Mitochondrial Damage 

 As the main supply of ATP to sustain cellular processes, mitochondria play a critical role 

in signaling cell injury and death by multiple pathways (Robbins et al., 2010). As ATP levels drop 

even 5-10% below normal, multiple changes occur to many critical cellular systems that affect 

the normal function of mitochondria. Cellular swelling due to non-penetrating solute imbalances 

and acidification of the intracellular environment are major contributors to an environment that 

can damage mitochondria and lead to cell death. 
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 The [Ca2+] in the mitochondrial matrix compartment is controlled by multiple ion 

transporters and the proton pumps of the respiratory chain in oxidative phosphorylation. The 

transport cycle consists of the Ca2+ uniporter moving calcium ions from the intermembrane space 

into the mitochondrial matrix, the Na+/Ca2+ exchanger (NCX), and the Na+/H+ exchanger of the 

inner membrane. This transport cycle relays changes in cytosolic [Ca2+] to changes in [Ca2+] in the 

mitochondrial matrix. Calcium ions in the range of 0.2 – 10 μM are important for the regulation 

of Ca2+-sensitive enzymes like key regulators of oxidative metabolism – pyruvate dehydrogenase, 

oxoglutarate dehydrogenase, and isocitrate dehydrogenase. If ATP levels are within 75% of 

normal levels in cardiac cells, even with >100-fold increases in mitochondrial [Ca2+], the cells 

remain viable. 

 

Figure 1: Signaling cascade, resulting from anaerobic metabolism, leading to cell death in 
ischemia. 
An abbreviated list of downstream signaling mechanisms following myocardial ischemia 
and/or hypoxia leading to the reduced availability of oxygen to the working cardiac tissue. 
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 In the absence of ATP, the overload of cytosolic [Ca2+] (due to increased intracellular [Na+] 

and [H+]) and the presence of high levels of inorganic phosphate, Pi (due to reduced production 

of ATP), leads to the opening of a pore in the inner membrane of the mitochondria, one 

component in a protein complex called the permeability transition (PT) pore. With an estimated 

diameter of 2.0 – 2.6 nm, the PT pore is large enough to allow transport of most metabolites 

produced in the mitochondrial matrix and hydrated inorganic ions including Ca2+. First thought 

to be a method to regulate [Ca2+] overload in the mitochondria matrix, it is now established that 

PT pore opening is involved in the pathogenesis of necrotic cell death (Crompton, 1999). 

Additionally, opening of the PT pore, a high-conductance channel, leads to loss of mitochondrial 

inner membrane potential, further inhibiting oxidative phosphorylation and progressive 

depletion of ATP. A vicious cycle begins since PT pore opening leads to ATP breakdown rather 

than synthesis, which leads to additional [Ca2+] deregulation, which leads to further PT pore 

opening, and so forth. Once past a point of phosphorylation potential for adenine nucleotides 

and regulation of [Ca2+], the cell undergoes necrosis. 

 The portion of the PT pore protein complex on the inner membrane, adenine nucleotide 

translocase (ANT), can also contact the voltage-dependent anion channel (VDAC) protein, on the 

outer membrane creating the full PT pore protein, enabling a continuous connection from the 

cytosol to the matrix of the mitochondria. Additionally, swelling of the highly folded inner 

membrane from ANT opening can lead to matrix expansion and outer-membrane rupture. 

Individually or in combination, these phenomenon can contribute to leakage of pro-apoptotic 

proteins from the intermembrane space or mitochondrial matrix and help mediate cellular 

apoptosis as well (Crompton, 1999).  
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Loss of Calcium Ion Homeostasis 

 Thus far, the loss of calcium ion homeostasis and regulation has been a consequence of 

depleting ATP levels to mediate cellular injury (cellular swelling through reduced active ion 

transport and mitochondrial damage through PT pore formation). Increases in intracellular 

calcium ion concentration due to a lack of calcium ion regulation can lead to cell injury through 

more direct biochemical means – promotion of Ca2+-activated effector mechanisms. A non-

exhaustive list of calcium-sensitive enzyme classes and processes include: Ca2+-activated binding 

proteins (e.g. calmodulin); synthases (e.g. NO synthase); protein kinases (e.g. myosin light chain 

kinase [MLCK]); protein phosphatases (e.g. calcineurin); transglutaminases (e.g. 

transglutaminase 2); catabolic enzymes targeting DNA (e.g. endonucleases), proteins (e.g. 

calpain), and lipids (phospholipase A2); energy-dependent processes (e.g. ATPases); and 

transcription regulation (e.g. cyclic AMP response element-binding protein [CREB]) (Berridge et 

al., 2003). Ca2+ is an activator of numerous enzymes involved in the turnover of proteins, 

phospholipids, and nucleic acids in the cell. Sustained increases in homeostatic intracellular [Ca2+] 

can lead to unmitigated breakdown of cellular macromolecules important to cell function. As 

cardiomyocyte injury occurs within minutes of ischemia, the focus will be on enzymes and 

processes that result in more immediate cellular changes and injury and discussions of 

derangements in transcription will not be included. The preceding list of enzymes and processes 

can then be grouped into two categories: 1) the activation of Ca2+-dependent catabolic enzymes 

and 2) the alteration of cytoskeletal integrity. 

 Homeostatic protein turnover is essential in all cells. In every tissue, the majority of 

intracellular proteins are degraded through the ubiquitin/proteasome pathway (UPP) (Lecker et 
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al., 2006). Interestingly, large protein complexes like intact myofibrils cannot be degraded by UPP 

– specific interactions between individual proteins of the myofibril (e.g. actin, myosin, and 

troponin) protect the myofibril from UPP processing (Solomon and Goldberg, 1996). Thus, to 

degrade myofibrils, the complex must be pre-processed before entering the UPP. Pre-

disassembly of the myofibril is attributed to calpains, a Ca2+-activated neutral protease. Since 

optimum activity of calpains is at normal intracellular pH, calpains are not sequestered in 

lysosomes, remaining freely solubilized in the cytosol (Nicotera et al., 1992). Studies in transgenic 

mice that overexpress calpain lead to widespread myocytolysis and a robust inflammatory 

response eventually leading to heart failure – these results support the idea that calpain 

overactivation, either through transgenic upregulation of calpain protein production or increased 

activation from elevated levels of intracellular [Ca2+] contribute to myocardial injury (Galvez et 

al., 2007). The degradation of the contractile machinery in myocardium eventually is irreversible, 

leading to cell death. 

 Phospholipases are important enzymes for generating signaling molecules from 

phospholipid sources. For example, phospholipase C (PLC), is an important plasma membrane 

protein that catalyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and 

inositol 1,4,5-triphosphate (IP3). Although PLC is not a catabolic enzyme of structural 

phospholipids per se, it is important in calcium ion mobilization and its overstimulation creates 

an autocatalytic loop to release additional Ca2+ from the sarcoplasmic reticulum and other non-

mitochondrial stores from IP3 signaling (Berridge et al., 2003; Nicotera et al., 1990), while also 

upregulating activity of a specific Ca2+-activated isoform of PLC, PLCδ, to create additional IP3. 

Furthermore, elevated [Ca2+] activates a different phospholipase that does have the ability to 
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catabolize structural phospholipids – phospholipase A2 (PLA2). PLA2 regulates the production of 

arachidonic acid from phospholipids to regulate cellular process (e.g. [Ca2+] levels) and for 

eicosanoid biosynthesis (Leslie, 1997; Nicotera et al., 1992). Not only is PLA2 a Ca2+- and 

calmodulin-dependent enzyme, calcium ion is also necessary for binding PLA2 to the plasma 

membrane to carry out its enzymatic function (Leslie, 1997). Thus, when supranormal levels of 

[Ca2+] are present in the cell, PLA2 activity is increased and its localization to the plasma 

membrane is enhanced, resulting in extensive plasma membrane breakdown and in the possible 

generation of toxic metabolites from arachidonic acid byproducts (Nicotera et al., 1992). These 

mechanisms contribute to additional cell injury that are eventually irreversible, leading to cell 

death. 

 Nucleic acid repair and turnover is tightly regulated for appropriate cell function. 

Normally, DNA compaction by chromatin binding protects it from sources of extracellular damage 

(e.g. radiation (Takata et al., 2013)) and blocks access to active sites for various enzymes targeted 

to DNA(Alberts, 2002). Ca2+ overload and calpain activation has been shown to affect the integrity 

of the nuclear membrane, decreasing the ability to regulate nucleocytoplasmic transport, 

creating a subsequent rise of [Ca2+] in the nucleoplasm to match elevated [Ca2+] in the cytoplasm 

(Zhivotovsky and Orrenius, 2011). A consequence of Ca2+ influx into the nucleus is chromatin 

unfolding by redistributing histones or activating topoisomerase II (Nicotera et al., 1994). With 

DNA more accessible due to increased [Ca2+], it is now more susceptible to endogenous DNase 

activity or increased catabolism from Ca2+-activated enzymes like endonucleases (Nicotera et al., 

1994). Additionally, topoisomerase II activated by calcium to enable chromatin unfolding can, at 

elevated [Ca2+], be locked into a conformation that cleaves, but does not religate, DNA, further 
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leading to DNA damage (Nicotera et al., 1992). With conditions tipping the balance towards DNA 

damage without methods for repair, the accumulating DNA damage is eventually irreversible, 

leading to cell death. 

 The intracellular cytoskeleton is composed of three different fibers, differentiated by size, 

protein composition, activity and function (Nicotera et al., 1992). These fibers, in order of size 

are: microfilaments, intermediate filaments, and microtubules. Given the different compositions, 

activities, and functions of cytoskeleton proteins, the disruption of these different classes of 

proteins due to increased [Ca2+] can occur from multiple mechanisms, which can be grouped into 

two distinct processes: 1) modifications of cytoskeleton protein interactions and binding or 2) 

catabolism of cytoskeleton proteins. 

 Microfilaments are predominantly composed of actin and various actin-binding proteins 

(ABPs). The ABPs modulate actin polymerization state, the self-assembly of actin to form actin 

bundles, and the association of actin bundles to link to protein anchors in the plasma-membrane 

(Nicotera et al., 1992). ABPs that mediate interactions of actin bundles to the plasma membrane 

require Ca2+ homeostasis to mediate normal activity. At supranormal levels of [Ca2+], alpha-

actinin dissociates from the assembled actin arrays, delinking actin arrays from the plasma 

membrane. Additionally, because of ATP depletion, actin depolymerization occurs and the actin-

myosin network breaks down, further leading to further cytoskeletal damage (Nicotera et al., 

1992). Microtubule structure and distribution are also controlled by interactions of microtubule-

associated proteins (MAPs) and their modulation by Ca2+. In the presence of calmodulin, studies 

in fibroblasts show that microtubule disassembly occurs at the millimolar instead of the 

micromolar range of unbound [Ca2+]. Lastly, the phosphorylation state of cytoskeleton proteins 
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is important in regulating their interactions with other proteins. Ca2+-calmodulin-dependent 

protein kinases play a role in regulating cytoskeleton-protein phosphorylation states and studies 

where kinases and phosphatases are irregularly inhibited can induce abnormal protein 

interactions, leading to cell injury and death (Nicotera et al., 1992). 

 Ca2+-dependent proteases catabolize numerous cytoskeletal proteins including spectrin, 

fodrin, caldesmon, adducin, and tubulin (Nicotera et al., 1992). An important striated muscle 

protein that anchors alpha-actinin to the cell’s sarcolemma, is vinculin (Zemljic-Harpf et al., 

2009). Vinculin is a preferred substrate for Ca2+-dependent proteases (Nicotera et al., 1990) so 

increases in free cytosolic [Ca2+] leads to increased vinculin degradation, unlinking the 

sarcomeres from the plasma membrane, preventing myofibril force generation from being 

translated to surrounding myocardium, thereby reducing the pumping function of the heart. 

Additional Damage in Ischemia-Reperfusion 

 Thus far, the discussion has focused on the pathophysiology of injury due to ischemia. To 

limit the size of the area at risk due to the loss of blood flow and possibly salvage cells that have 

not sustained irreversible damage, the timely reestablishment of blood flow is paramount. 

However, the reperfusion of ischemic myocardium can independently promote further cell injury 

and death through multiple mechanisms. These include: drawbacks from activating and 

facilitating innate immunity; consequences of restarting cellular processes in dysfunctional 

cellular machinery from the resupply of required components for cellular function and washout 

of waste products; and exacerbations of ischemia from paradoxical microvascular obstruction 

(Hausenloy and Yellon, 2013). 
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 The innate immune system is always poised to eliminate damaged cells. After 

reestablishing blood flow to areas of the heart damaged from ischemia, endothelial cells become 

activated, release cytokines, and increase expression of adhesion proteins to promote neutrophil 

and monocyte activation, homing, and adherence to the affected area. The influx of neutrophils 

and monocytes causes the generation of harmful reactive oxygen species (ROS) due to the 

presence of NADPH oxidase assembled in a multiprotein plasma membrane complex (Robbins et 

al., 2010) and the release of proteolytic enzymes from these leukocytes, contributing to vascular 

and myocardial damage (Piper et al., 2003). The complement system is another component of 

innate immunity activated after ischemia-reperfusion. The anaphylatoxins (C3a, C4a, and C5a) 

are preferentially cleaved from their corresponding complement components leading to 

histamine release and increased vascular permeability (Robbins et al., 2010); C5a acts as a 

chemoattractant for leukocytes exacerbating ROS production and proteolysis; and an increase in 

the formation and deposition of the membrane attack complex in cell membranes leads to 

further plasma membrane damage and increased cell permeability, further contributing to cell 

injury. Thus, two components of the innate immune system that are normally protective are 

stimulated after reperfusion and contribute to additional myocardial cell injury (Moens et al., 

2005). 

 The return of fresh blood to ischemic areas delivers much needed oxygen and fuel 

substrates (i.e. glucose and fatty acids), refreshes extracellular levels of non-penetrating ions, 

and washes away waste metabolites like carbon dioxide and lactate. With the return of oxygen 

and substrates to feed the Krebs cycle and oxidative phosphorylation in mitochondria, a burst of 

oxidative stress is produced. This occurs because enzymes in the electron transport chain are not 
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necessarily inhibited, just unlinked from respiration. For example, complex I activity continues to 

produce superoxide anions (O2
-) from oxygen, using the NADH produced by the Krebs cycle in 

aerobic glycolysis (Kowaltowski et al., 2009; Tompkins et al., 2006). With enzyme dysfunction due 

to inappropriate phosphorylation state or environmental pH inside the mitochondria, the 

superoxide anion may react to form hydroxyl radicals (OH-) another damaging reactive species 

(Kowaltowski et al., 2009). Furthermore, oxidative stress has been shown to upregulate 

endothelial NOS (eNOS) and inducible NOS (iNOS) in vitro with human coronary artery 

endothelial cells grown in culture and in vivo with experimental rats (Zhen et al., 2008), creating 

the nitric oxide (NO) free radical. The reaction of NO and O2
- generates the highly reactive 

nitrogen species peroxynitrite (ONOO-) that freely crosses mitochondrial membranes (Marla et 

al., 1997) which can oxidize multiple substrates like membrane phospholipids (Radi et al., 1991) 

directly contributing to cytotoxicity. Peroxynitrite is also known to mediate protein tyrosine 

nitration, a recognized pathological pathway. Of importance in ischemia-reperfusion injury, a 

notable enzyme that loses function upon protein nitration is the mitochondrial matrix enzyme 

manganese superoxide dismutase (MnSOD). Upon nitration of Tyr-34 by a Mn-catalyzed process, 

the enzyme is completely inactivated (Radi, 2004). The loss of this specific dismutase allows for 

the accumulation of superoxide anion produced by complex I that is uncoupled from oxidative 

phosphorylation, thereby increasing oxidative stress in the mitochondria (Kowaltowski et al., 

2009). 

 The intracellular and extracellular [Ca2+] is normally 10-3 mM and 101 mM respectively, a 

difference of four orders of magnitude (Nicotera et al., 1992). Refreshing the extracellular 

calcium ion depot reestablishes a tremendous concentration gradient between the exterior 
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versus interior of affected tissues. With the plasma membrane of affected areas already damaged 

from ischemia, the reperfusion of fresh blood to areas at risk in the infarcted heart lead to further 

intracellular Ca2+ overload (Hausenloy and Yellon, 2013). Consequently, the cell injury 

mechanisms mentioned in the section about the loss of calcium ion homeostasis are stimulated 

with prolonged calcium overload inducing additional PT pore opening in mitochondria, 

exacerbating mitochondrial damage (Halestrap et al., 2004). 

 Ischemia promotes intracellular anoxia, lactate formation, and ATP depletion, leading to 

acidosis (conditions below physiological pH of 7.4 found in normal blood) inside the cell. Although 

acidosis is generally viewed as detrimental to cellular functions, especially regarding proper 

protein folding and how it affects enzyme activity, the acidotic environment may provide a 

protective mechanism during ischemia, hypoxia, and toxic stress (Bond et al., 1994; Lemasters et 

al., 1996). In studies of cultured rat cardiomyocytes, acidosis (pH ≤ 7.0) during anoxia and hypoxia 

resulted in losses of less than 25% of cells over a 4.5-hour period. However, if a pH of 7.4 is 

maintained in the anoxic and hypoxic infusion media, more than 95% of cells are lost after 4.5 

hours (Bond et al., 1994). The picture becomes grimmer after reperfusion. After 4 hours of 

anoxia, cultured rat cardiomyocytes were reperfused under three different conditions: 1) normal 

[O2] and pH (pH = 7.4); 2) anoxic with normal pH; and 3) normal [O2] with acidic pH (pH = 6.2). 

After one hour of reperfusion, the first two conditions resulted in about 50% cell death. However, 

reperfusion with oxygenated, yet acidotic media led to minimal cell losses of about 5% (Bond et 

al., 1994). This is particularly interesting since oxygen status did not play a role in determining 

cell viability at physiological pH, whereas the return of pH from acidotic to physiologic 

precipitated the observations in cell culture, creating a “pH paradox”. The working hypothesis 
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from this group is that the acidic environment following ischemia inhibits the function of 

degradative enzymes like phospholipases, proteases, and endonucleases that are activated from 

Ca2+ overload after ATP depletion (Bond et al., 1994; Lemasters et al., 1996). Many of these 

enzymes have optimum shape and confirmation at neutral to slightly alkaline conditions – a range 

covered by the pH of normal blood (Alberts, 2002). Thus, acidosis in ischemia reduces the activity 

of these destructive enzymes, while restoring pH during reperfusion by washing out lactate and 

other waste metabolites releases this inhibition, accelerating cellular injury in multiple 

compartments, ultimately tipping the scale towards cell death (Bond et al., 1994; Lemasters et 

al., 1996). 

 Ischemia not only affects cardiomyocytes, it also affects all supporting and connective 

tissue. Following ischemia-reperfusion injury, coronary endothelial cells become dysfunctional, 

showing impaired vasodilatory and anti-thrombotic functions (Moens et al., 2005) while 

physically swelling and taking a plump appearance (Hausenloy and Yellon, 2013). Instead of 

producing potent vasodilators like endothelium-derived hyperpolarizing factor (Lilly, 2011), 

prostacyclin (Moens et al., 2005), and NO (Moens et al., 2005), dysfunctional endothelium 

produce potent vasoconstrictors like endothelin-1 and ROS (Lilly, 2011; Moens et al., 2005). 

Additionally, dysfunctional endothelium become sensitive to thrombin and its ability to stimulate 

vasoconstriction (Moens et al., 2005). This functional reduction in coronary artery caliber is 

combined with physical obstructions to block blood flow during reperfusion. In combination with 

the swelling of cardiomyocytes that produce external capillary compression, the swollen 

endothelial cells physically reduce the capillary lumen diameter (Moens et al., 2005). The 

impaired release of prostacyclin and NO, themselves inhibitors of platelet aggregation, lead to 
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the formation of micro-thrombi (Lilly, 2011). Finally, the activated endothelium that attracts 

leukocytes to the area to marginate, roll, and adhere to the endothelium during inflammation 

create leukocyte plugs that impede flow (Hausenloy and Yellon, 2013). The functional and 

physical blockage of blood flow during reperfusion is called microvascular obstruction (MVO) that 

can vary in severity from “no-flow” to “low-flow” (Moens et al., 2005). In patients that have 

therapeutic interventions following a myocardial infarction, the presence of MVO is associated 

with a larger area at risk, a lower ejection fraction after recovery, adverse left ventricle 

remodeling, and worse clinical outcomes (Hausenloy and Yellon, 2013). 

Injury Due to Cryoinjury or Cryoablation 

 The field of low-temperature cellular biology and cryobiology is a richly diverse field 

covering topics such as how freezing temperatures can preserve cell and tissue function for long-

term, low temperature storage (Mazur, 1984) to how it can be used for targeted injury and 

destruction of pathologic tissues (Gage and Baust, 1998). The discussion for cardiac injury here 

will focus on cryobiology processes that pertain to cryoinjury and cytoablative applications. Given 

the tiny volumes of water inside cells and the colligative properties of the dissolved proteins and 

electrolytes in plasma, the intracellular solution generally exhibits a eutectic freezing point range 

of 0 to –40°C. Given the electrolyte and protein make up of specific cells, some even have a 

eutectic freezing point as low as –55°C. Once frozen, the duration of freezing plays a role in the 

amount of tissue damage that is induced. However, in vitro and in vivo tests have found that 

cooling below the eutectic freezing point can eliminate the need for sustained dwell times. Thus, 

to repeatably and reproducibly induce cell damage, achieving tissue temperatures colder than –

50°C for any duration ensures cellular freezing damage (Gage and Baust, 1998). 
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 As the local tissue environment drops towards the eutectic freezing point for the cell, ice 

crystal formation first occurs in the extracellular space (Mazur, 1984). When this occurs, the 

remaining extracellular solution becomes hyperosmotic. If the cooling rate is slow enough, the 

cell has sufficient time to move water out of the cell by osmosis, concentrating the intracellular 

solutes to maintain the chemical potential of intracellular water in equilibrium with the chemical 

potential of extracellular water, preventing the formation of ice crystals (Mazur, 1984). Thus, to 

induce ice crystal formation inside the cell and ensure physical, intracellular injury, cooling must 

occur fast enough to prevent water movement by osmosis. A clinical target is to achieve a cooling 

rate of at least –50°C/minute (Gage and Baust, 1998). Once properly frozen, the destruction of 

cells and tissue by freezing are mediated by at least two processes: direct cell and tissue injury 

and ischemia/anoxia from vascular stasis. 

 Direct cell and tissue injury from freezing occurs by two linked biochemical and 

biophysical changes: solute concentration derangements and ice crystal formation (Gage and 

Baust, 1998). As ice crystals form intracellularly and desiccate the cell, solute concentrations 

inside the cell begin to rise. The high concentration of solutes is thought to induce cell injury by 

changing the conformation of numerous proteins, damaging enzymatic machinery and 

destabilizing organelle and cellular membranes (Hoffmann and Bischof, 2002). The ice crystals 

themselves are thought to mechanically pierce or shear organelles and the cell membrane, 

practically ensuring cell death through mechanical trauma. Furthermore, overall tissue 

macrostructure and organ function is impaired since the shearing forces from ice crystal 

formation in the supporting and connective tissue around tightly packed cells cause gross tissue 

damage (Gage and Baust, 1998). 
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 The suggested clinical freezing point and cooling rate to achieve cryoinjury not only 

freezes cells and tissue, it leads to circulatory stagnation as blood in the vasculature freezes. This 

reduction and/or complete loss of blood flow while tissue is frozen is the textbook definition of 

ischemia. In this case, the expectation would be that derangements in the section describing 

ischemic would occur in cryoinjury. The complete and clear demarcation of cellular necrosis in 

cryogenic lesions with damaged yet viable cells in the periphery of the affected area convince 

many investigators that ischemia and “the vascular effect” dominate cryoinjury (Gage and Baust, 

1998; Hoffmann and Bischof, 2002), but many of the mechanisms described in the section on 

ischemia-induced injury require intact organelles and dysfunctional, yet viable cells. Conversely, 

others argue that the uniformity of cell death and the contours of the necrotic area matching the 

shape of the cooling probe is evidence of direct cell injury due to ice crystal formation dominating 

cryoinjury (Mazur, 1984). Without a clear consensus, it can only be concluded that vascular 

stagnation during freezing is not a protective mechanism, but it may play a role to cause further 

cell injury. 

 Freezing is not the only damaging feature of cryoinjury; the thawing process can induce 

further damage to affected areas. As the damaged tissue and frozen blood thaw, microvascular 

obstruction and further cell rupture can occur. The freezing process damages the endothelium 

lining the vessels that perfuse the heart, leading to MVO as described in ischemia-reperfusion 

(Gage and Baust, 1998) once blood begins to flow. Thus, unaffected tissues surrounding the 

necrotic lesion from cryoinjury may be affected by ischemic damage since tissue perfusion does 

not immediately resume upon tissue thawing. Finally, as ice crystals first melt in the extracellular 

spaces during tissue thawing, the environment surrounding the cells is briefly hypotonic in 
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comparison. As a result, water enters the cell and its organelles through their mechanically-

damaged membranes, causing them to swell even further and potentially rupture (Hoffmann and 

Bischof, 2002). 

Injury Due to Conditional Genetic Ablation 

 Toxinogenic strains of Corynebacterium diphtheriae produce diphtheria toxin (DT), a 

single polypeptide chain of about 62 kilodaltons (Pappenheimer, 1977). DT contains two distinct 

fragments with separate functions, the enzymatically active (DT-A) domain and the receptor 

binding (DT-B) domain. DT enters the cell when DT-B binds to the DT receptor on the cell surface, 

a protein identified as a precursor to heparin-binding EGF-like growth factor (HB-EGF) (Akazawa 

et al., 2004), and is internalized into the cell as endosomes by receptor-mediated endocytosis 

(Falnes and Sandvig, 2000). In the late stages of the endosome lifecycle, the late endosomes 

containing DT fuse with lysosomes, acidifying the DT-containing late endosome (Huotari and 

Helenius, 2011). This hydrolyzes DT, unfolding the protein to expose the hydrophobic interior 

that immediately interacts with membrane lipids, causing the rapid translocation of DT-A into 

the cytosol (Draper and Simon, 1980; Sandvig and Olsnes, 1980). 

 Once present in the cytosol, it is commonly accepted that DT-A leads to cell death by 

inactivating elongation factor 2 (EF-2) in ribosomes, inhibiting protein synthesis (Pappenheimer, 

1977; Saito et al., 2001; Van Ness et al., 1980a, b). Without protein turnover, cell death is 

guaranteed, with most researchers attributing cell death to apoptosis (Komatsu et al., 1998), 

while some believe cell death from DT occurs also by autophagy (Akazawa et al., 2004). In either 

regard, cell death follows a structured program, normally eliciting little to no inflammation 

(Robbins et al., 2010). However, although both apoptosis and autophagy should not induce 
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inflammation, inflammatory cells and cytokines were detected when DT was used in a conditional 

genetic ablation model for heart failure (Akazawa et al., 2004). This may have occurred since 

almost 20% of cardiomyocytes were induced to die at the same time, requiring an inflammatory 

response to clear all the cellular debris. Finally, some researchers have reported that DT exhibits 

DNase activity, leading to apoptosis induced by internucleosomal DNA cleavage (Chang et al., 

1989). However, this may just be part of the spectrum of programmed cellular death since other 

laboratories have claimed that DNA fragmentation seen from DT is simply a consequence of 

apoptosis induced by EF-2 inactivation (Kochi and Collier, 1993). 

Injury Due to Apical Resection 

 The classical and most popular cardiac resection technique is apical resection. This model 

involves the gross, mechanical removal of the ventricular apex (Porrello et al., 2011; Poss et al., 

2002), although some newt researchers have also removed lateral aspects of the ventricle 

(Witman et al., 2011). In mammals, if the resection does not penetrate either ventricular 

chamber and bleeding is controlled, survival rates in neonatal P1 mice are about 90%, although 

survival in P7 mice is much worse (Porrello et al., 2011). This parallels survival rates in zebrafish 

(Poss et al., 2002) and salamanders(Cano-Martinez et al., 2010), although less care is required 

when resecting ventricular tissue since clotting in these non-mammalian vertebrates is more 

robust (Cano-Martinez et al., 2010; Wang et al., 2011) and their systemic blood pressures are 

much lower (Hu et al., 2001; Shelton and Jones, 1968). 

 Except for different methodologies to exteriorize or retract the heart for resection in 

neonatal mice (Bryant et al., 2015), the cardiac resection injury model only damages the cells and 

tissues directly at the cut border. Once bleeding is stopped (from natural hematoma formation 
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or by applied pressure from surgeon) and a stable clot has formed, acute inflammatory processes 

secondary to gross tissue damage and trauma are the main cellular-response mechanisms. Some 

important mediators of acute inflammation, along with their actions include: vasoactive amines 

(increase vascular permeability); arachidonic acid metabolites (leukocyte chemoattractant); and 

cytokines (leukocyte chemoattractant and activator). Outcomes of acute inflammation include 

resolution/regeneration (clearance of injurious stimuli, replacement of cells and resumption of 

normal function), healing (formation of abscess or remodeling through fibrosis), or progression 

(to chronic inflammation) (Robbins et al., 2010). 

Molecular Signaling Pathways Mediating Cardiac Repair 

 In highly regenerative animals, the restoration of lost tissue, regardless of cause, is 

generally believed to follow reactivated pathways of embryogenesis and development such as 

Hippo, BMP, FGF, PDGF, Wnt, Notch, Hedgehog, retinoic acid (Castellan and Meloni, 2018; Han 

et al., 2014). While this may be true for non-mammalian vertebrates, the situation is not well 

understood in mammals. The variability in responses in mammals may derive from the improper 

reactivation of developmental pathways or evolutionary changes to intrinsic cellular processes 

that have decreased the regenerative ability of developmental pathways in juvenile and mature 

mammals (or a combination of both) (Vivien et al., 2016). However, what is clear from the 

numerous studies in the field of regenerative medicine is that the molecular processes of cardiac 

repair and regeneration are age-related (Castellan and Meloni, 2018), species-dependent (Judd 

et al., 2016; Vivien et al., 2016), tissue-specific (Iismaa et al., 2018), and injury-driven (Andersen 

et al., 2014; Bryant et al., 2015; Darehzereshki et al., 2015; Jesty et al., 2012; Konfino et al., 2015; 

Polizzotti et al., 2016; Strungs et al., 2013). The following review summarizes signaling pathways 
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that are candidates for manipulating the repair process to perfectly restore tissue lost due to 

cardiac injury. 

Injury Due to Ischemia and Ischemia-Reperfusion 

Non-mammalian Vertebrates 

 Coronary vessels are not found in all organisms with a heart. For instance, most 

amphibians such as newts, salamanders, and frogs have no coronary vessels (Reese et al., 2002). 

Consequently, journal database searches rarely reveal any cardiac regeneration studies in 

amphibians using ischemia or ischemia-reperfusion injury models. Thus, mechanisms guiding 

heart regeneration in amphibians after cardiac ischemia/ischemia-reperfusion injuries remain to 

be investigated and elucidated. 

 The presence of coronary vessels in fish are variable, usually found in large predatory fish 

or fish that live in environments of low oxygen tension. These fish have coronary arteries in the 

epicardium that perfuse coronary vessels located only in the outer compact ventricular 

myocardium (Moore et al., 1976). Interestingly, not only do zebrafish have coronary arteries on 

the epicardium of the dorsal and ventral ventricular surfaces, coronary vessels are also found 

throughout the compact myocardium of the ventricle, with coronary capillaries terminating at 

the subtrabecular layer adjacent to the compact layer (Hu et al., 2001). Although zebrafish do 

have coronary vessels supplied by a coronary artery, the size limitations of their gross cardiac 

anatomy make producing ischemia and ischemia-reperfusion injuries very difficult. Zebrafish 

coronary arteries are 10-15 μm in diameter (Hu et al., 2001), making it very difficult to produce a 

localized ligation to induce ischemia or ischemia-reperfusion injuries. Therefore, like amphibians, 
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mechanisms guiding heart regeneration in fishes after cardiac ischemia or ischemia-reperfusion 

injuries remain to be investigated and elucidated. 

Mammals 

 The tissue response after a myocardial infarction follows an exquisitely orchestrated and 

complex set of events. These processes occur, with or without reperfusion, and can be grouped 

into the inflammatory, reparative, and maturation phases (Prabhu and Frangogiannis, 2016). 

Once cells begin to die from ischemia, cell death mechanisms are activated, primarily driven by 

necrosis, secondarily by apoptosis, and to a lesser degree by autophagy (Eltzschig and Eckle, 

2011; Frangogiannis, 2012; Hotchkiss et al., 2009). Additional damage from reperfusion injuries 

augment the damage-based activation of inflammation. 

 Necrotic, apoptotic, stressed, and injured parenchymal and stromal cells after myocardial 

infarction release damage-associated molecular patterns (DAMPs) that are the major 

inflammatory phase ligands. Examples of DAMPs involved in the inflammatory response during 

cardiac ischemia and ischemia-reperfusion injuries are high-mobility group box 1 (HMGB1), S100 

proteins, ATP, heat shock proteins, complement, among others (de Haan et al., 2013; Eltzschig 

and Eckle, 2011). These substances bind to related pattern recognition receptors (PRRs) such as 

membrane-bound toll-like receptor (TLRs), cytosolic nucleotide-binding oligomerization domain-

like receptors (NLRs), and cell-surface receptors for advanced glycation end products (RAGEs) on 

surviving parenchymal cells and infiltrating leukocytes. Binding of DAMPs on PRRs robustly 

activate the endpoint signaling cascades of inflammation such as mitogen-activated protein 

kinases (MAPKs) that mediate transcription of inflammatory mediators through the 

phosphorylation and regulation of transcription factors, coregulatory proteins and chromatin 
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proteins (Whitmarsh, 2007) and nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB) signaling that acts as a transcription factor that activates gene transcription for multiple 

inflammatory mediators (Newton and Dixit, 2012). 

 The reparative phase inhibits and resolves the inflammatory phase, involving the control 

of multiple inflammatory cells that have migrated to the injury site. Molecular signals that inhibit 

inflammation include cytokines like IL-10 (suppresses synthesis of proinflammatory cytokines and 

chemokines in macrophages through STAT3 signaling) (Prabhu and Frangogiannis, 2016), a 

member of the TGF-β family [growth differentiation factor-15 (GDF-15)/macrophage inhibitory 

cytokine-1(MIC-1)] (counteracts leukocyte integrin activation by blocking chemokine signaling] 

(Kempf et al., 2011), and lipid-derived pro-resolving mediators (e.g. lipoxins resolvins, protectins, 

and maresins) (Serhan, 2014). Signals that resolve inflammation and promote the transition to 

fibrosis and stimulate the conversion of fibroblasts to myofibroblasts include: inducing and 

activating a different member of the TGF-β family (e.g. TGF-β1); modifying the extracellular 

matrix (ECM) by the secretion and deposition of matricellular proteins (thrombospondin-1 and 

the osteopontin family); and globally upregulating of the renin-angiotensin-aldosterone system 

(Booz and Baker, 1995) (mediated by TGF-β signaling) (Prabhu and Frangogiannis, 2016) and 

bolstering it by the local generation of angiotensin II at the site of infarction (Sun and Weber, 

1996). Other mediators of myofibroblast activation include members of the PDGF and FGF 

families along with proteases derived from mast cells (tryptase and chymase) (Prabhu and 

Frangogiannis, 2016). The conversion of fibroblasts to the myofibroblast phenotype (i.e. 

fibroblasts with stress fibers like α-smooth muscle actin and contractile proteins like the 

embryonal isoform of smooth muscle myosin (Rohr, 2011; Santiago et al., 2010)) results in 
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increased proliferative activity and matrix stabilization, quickly producing stable structural tissue 

to withstand the mechanical forces in the heart. Delays in resolving inflammation, a greater initial 

inflammatory response, and large regions at risk are predictors of progressive compensatory 

ventricular remodeling (Prabhu and Frangogiannis, 2016). The importance of macrophages in the 

reparative phase are elegantly shown in a negative-control experiment. When macrophages are 

depleted from the healing heart by serial injections of clodronate-containing liposomes, the lack 

of TGF-β and vascular endothelial growth factor-A (VEGF-A) secretion resulted in the ongoing 

presence of cellular debris for four weeks after injury, whereas the untreated hearts allowed 

macrophage to rapidly remove necrotic cellular debris to allow granulation tissue formation (van 

Amerongen et al., 2007). 

 The maturation phase involves the deactivation of reparative cells (e.g. fibroblasts and 

myofibroblasts) and their clearance from the injury site by apoptosis. Additionally, matrix 

proteins secreted during the reparative phase begin to cross-link and form a more cohesive 

network to provide added structural integrity to the injured area. The signaling mechanisms that 

lead to the deactivation of reparative cells, their clearance by apoptosis, and the cross-linking of 

matrix proteins remains unknown (Prabhu and Frangogiannis, 2016). 

Injury Due to Cryoinjury or Cryoablation 

Non-mammalian Vertebrates 

 A review of the literature supports the notion that cardiac development-signaling 

pathways are essential for adult zebrafish heart regeneration (Vivien et al., 2016). Additionally, 

secondary to tissue damage, DAMPs trigger an inflammatory response responsible for tissue 

repair. Prior studies in non-mammalian vertebrates using cryoinjury or cryoablation techniques 
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provide evidence that these two signaling pathways play a role in cardiac tissue regeneration in 

these animals. 

 Cardiac cells are derived from embryonic precursors found in the anterior lateral plate 

mesoderm. These embryonal cells differentiate into mature cardiac cells through the control of 

homeobox transcription factors from the Nk2 family, specifically nkx2.5. The regulation of nkx2.5 

expression is accomplished by the secretion of transforming growth factor β (TGFβ) (Stainier, 

2001). Similarly, the T-Box family (tbx) of transcription factors are important regulators of the 

differentiation of embryonic mesoderm. First cloned in the mouse, Tbx18 is found to be highly 

expressed in the developing epicardium of the heart (Kraus et al., 2001). Cloning and expression 

studies of the paralog tbx18 in zebrafish show that this gene is expressed starting at 36 hours 

post fertilization in the epicardium covering the sinus venosus, atrium and ventricle (Begemann 

et al., 2002). Lastly, a gene essential to the formation of an intact epicardium is the paralogous 

Wilms tumor suppressor-1 zebrafish gene, wt1. Conserved across vertebrate species, this gene is 

expressed as early as 4 days post-fertilization in zebrafish (Serluca, 2008). In summary, the 

developmental control of epicardium is essential to regulate cardiomyocyte proliferation and 

organization during embryogenesis (Sucov et al., 2009). 

 Transcript and protein expression analysis identified TGFβ to be activated during the 

cardiac regeneration process after cryoinjury in zebrafish hearts. To directly attribute this 

signaling pathway as necessary for regeneration, the investigators blocked the type I TGFβ 

receptor with a specific inhibitor (SB431542). Blocking the downstream effects of the TGFβ 

signaling pathway impaired heart regeneration (Chablais and Jaźwińska, 2012). In another study, 

researchers used prior results of epicardial activation after apical resection injury in the zebrafish 
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(Lepilina et al., 2006) (discussion below) to scope their investigation of gene expression changes 

after cryoinjury. After inducing cryoinjury, fluorescence in heart sections were visualized in 

transgenic zebrafish (wt1b:EGFPli1) expressing GFP under control of the Wilms tumor 1 paralog 

(wt1b) promoter. Additionally, the heart sections were co-labeled with in situ hybridization 

techniques using RNA probes against tbx18. The histologic preparations show that tbx18-

postitive and GFP-positive cells are found after 3-days post injury (dpi), the expression is limited 

to the epicardium, and the two different signals overlap. These results indicate that cryoinjury 

induces expression of developmental pathways in epicardium. Using immunofluorescence 

staining, the GFP-positive epicardial cells were labeled with anti-PCNA (proliferating cell nuclear 

antigen) antibodies. At 3 dpi, the injury-activated epicardial cells were proliferating and by 7 dpi, 

these cells had migrated through the wound area (Schnabel et al., 2011). The researchers also 

measured cardiomyocyte proliferation after cryoinjury using a different transgenic zebrafish line 

expressing GFP under control of the cardiac myosin light chain 2 (myosin light chain7) [cmcl2 / 

myl7] promoter that was also co-stained with anti-PCNA antibodies. At 1 dpi, no increase of 

PCNA-positive cardiomyocytes was detected. However, cmcl2:GFP-positive cells were positive 

for PCNA at 3 dpi. The data from Schnabel et al. suggest that there is activation of a 

developmental gene program (tbx18 and wt1a/wt1b) that activates epicardial cells and increases 

cellular proliferation in the epicardium. However, although these epicardial cells migrate 

throughout the wound area, it is unknown if the cardiomyocytes in the injured area are induced 

to proliferate by the activated epicardial cells or if the two events are simply correlated. 

 Developmental pathways are not the only signaling mechanisms involved in zebrafish 

heart regeneration after cryoinjury. After inducing massive cellular death, Chablais et al. notes a 
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progressively-healing injury response: thrombosis, inflammation, fibroblast accumulation, and 

collagen deposition. Following the heart for 60 days after cryoinjury, it was found that the scar 

tissue at the site of injury is progressively remodeled into functioning myocardium. 

Immunohistochemical techniques show that scar tissue undergoing remodeling is associated 

with fibroblasts that are positive for vimentin (VIM) secretion and the presence of ECM 

containing the protein tenascin-C (TNC) (Chablais et al., 2011). Previously thought to only be an 

intracellular intermediate filament, vimentin is secreted by activated macrophages; the anti-

inflammatory cytokine interleukin-10 (IL-10) blocks macrophage secretion of vimentin (Mor-

Vaknin et al., 2003). Vimentin plays roles in cell adhesion, cell migration, and cellular signaling 

especially in processes common to inflammation (Ivaska et al., 2007). However, it is not clear if 

vimentin itself stimulates regeneration or if it simply signals the pro-inflammatory, reparative 

and proliferative phase of inflammation. On the other hand, tenascin-c is found to play a direct 

role in tissue repair. Compared to levels in normal tissue, TNC expression is induced during tissue 

remodeling, vasculogenesis, and wound healing (Jones and Jones, 2000). In contrast to ECM 

proteins that provide structural support, TNC and other matricellular proteins (matrix proteins 

that can regulate cell function (Bornstein, 2001)) maintain a state of intermediate adhesion, 

allowing for cellular migration and actin stress fiber reorganization, supporting an environment 

for tissue remodeling and repair (Bornstein and Sage, 2002; Jones and Jones, 2000). 

Mammals 

 Like many injuries, inflammation plays a role in healing the mammalian heart after 

cryoinjury. A differential regeneration and scarring response after cryoinjury in neonatal mice 

was reported that was dependent upon the severity of the cryoinjury. In animals that received a 
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transmural injury, scarring persisted twenty-one, sixty, and one-hundred twenty days after 

surgery, whereas animals that received a less severe, non-transmural cryoinjury could heal with 

minimal scarring when inspected by histology at the same time points. After examining protein 

samples from mice three and seven days after injury for evidence of biomarkers or factors that 

mediate fibrosis or inflammation, it was found that there was a difference in expression of 

plasminogen activator inhibitor 1 (PAI-1) between transmural (10.2-fold increase over control) 

and non-transmural injury groups (3.1-fold increase over control) (Darehzereshki et al., 2015). 

PAI-1 is a protease inhibitor that limits tissue digestion during the inflammatory phase (Prabhu 

and Frangogiannis, 2016) and degradation of ECM that is laid down during the reparative phase 

by fibroblasts and myofibroblasts (Christia and Frangogiannis, 2013). Thus, insufficient 

remodeling of connective tissue and plasmin due to the increase expression of PAI-1 in the 

animals with transmural cryoinjury could play a role in mediating the repair of this injury type in 

mammals. 

 In addition to inflammatory pathways, cell cycle and proliferation pathways have been 

studied to further elucidate healing differences between neonatal mammals and slightly older, 

juvenile mammals after cryoinjury. When administered to adult mice, recombinant neuregulin-1 

(rNG1) stimulates the regeneration of cardiomyocytes (Polizzotti et al., 2015). Therefore, the 

same group hypothesized that administration of rNRG1 to neonatal mice after cryoinjury would 

be more effective since their cardiac cellular plasticity and new cardiomyocyte birthrate is much 

greater at this point in development (Bergmann et al., 2009; Bergmann et al., 2015). The results 

from that study suggest that the earlier administration of rNRG1 leads to better outcomes for 

the injured hearts. rNRG1 expression activates the ErbB/PI3K/Akt, ERK, and GSK3β/β-catenin 
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signaling pathways that lead to CM hypertrophy, dedifferentiation and proliferation (Bersell et 

al., 2009; Cai et al., 2016; D'Uva et al., 2015; Ebner et al., 2013; Wadugu and Kuhn, 2012). 

Although the experiments described by Polizzotti et al. are not the naturally-driven injury 

response to cryoinjury, the concept that the more proliferation-competent cardiomyocytes in 

neonatal and younger animals can have their natural expression of proliferation overdriven by 

rNRG1 and the downstream signals it activates. 

Injury Due to Conditional Genetic Ablation 

Non-mammalian Vertebrates 

 Developmental pathways have been identified to play a role in the rescue of zebrafish 

hearts injured by cardiac conditional genetic ablation. Taking the results of retinoic acid 

production following cardiac resection injuries in zebrafish, Wang et al. evaluated retinoic acid 

production following cardiomyocyte-specific ablation. In short, this specific injury induced 

retinoic acid production by non-myocardial cells, including endocardium and epicardium, that 

eventually lead to the full regeneration of destroyed cardiomyocytes (Wang et al., 2011). Thus, 

signaling from dying cardiomyocytes engaged neighboring cells to express developmental 

pathways to regenerate myocardium. 

 Continuing with other developmental pathways involving epicardium, another study 

showed the importance of this tissue layer as a source of paracrine signals important for 

cardiomyocyte survival and proliferation. By Want et al. extended the genetic ablation technique 

to also include the epicardium. When the epicardium was ablated along with myocardium injury, 

cardiomyocyte proliferation was inhibited and regeneration delayed. The epicardium has a high 

endogenous renewal capacity, with Sonic hedgehog signaling playing a major role in mediating 
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epicardial regeneration (Wang et al., 2015). Thus, the Sonic hedgehog signaling pathway can play 

an important role in mediating neighboring tissue health to support cardiomyocyte regeneration 

after injury. 

 Finally, the Notch pathway has been implicated as playing a role in cardiac repair after 

genetic ablation. Unlike the paracrine signaling from neighboring cells that promote 

cardiomyocyte renewal, an atrial-to-ventricular transdifferentiation of muscle cells was found to 

follow massive genetic ablation of ventricular muscle in zebrafish embryos. In this study, Notch 

signaling played a key role in mediating this transdifferentiation and blocking Notch signaling 

prevented cardiac regeneration (Zhang et al., 2013). 

Mammals 

 No studies to date have used cardiac genetic ablation in neonatal mice as an injury model 

to study cardiac regeneration. Based on the diphtheria toxin mechanism of action, cell death is 

likely due to apoptosis based on the observation of DNA fragmentation in studies using cell lines 

(Kochi and Collier, 1993) or through autophagy due to the observation of up-regulated lysosomal 

markers and the presence of increased numbers of autophagosomes. There is no additional 

damage to surrounding tissue since these genetic mouse models use the α-myosin heavy chain 

promoter to enable cardiac-specific cardiomyocyte cell ablation. A generalized inflammatory 

response was noted after cardiomyocyte cell death.(Akazawa et al., 2004). Methods to mediate 

inflammation mentioned in previous sections on mammalian studies may play a role in mediating 

regeneration if this model is used to study cardiac regeneration in mammals. 
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Injury Due to Apical Resection 

Non-mammalian Vertebrates 

 The signaling mechanism involved in repairing gross tissue loss in the heart is not 

completely understood, but a review of the literature on apical resection in non-mammalian and 

mammalian vertebrates, the most likely mechanism is the Hippo signaling pathway. The Hippo 

signaling pathway is a highly-conserved organ-size control pathway, first discovered in Drosophila 

genetic screens, controlling heart growth my promoting apoptosis and inhibiting cellular 

proliferation (Heallen et al., 2011; Zhao et al., 2010). When the Hippo pathway is stimulated, the 

transcription cofactor Yes-associated protein (YAP) and its associated transcriptional coactivator 

with PDZ-binding motif, Taz, are phosphorylated through a chain of kinases that prevent YAP/Taz 

from entering the nucleus – this promotes cell death and reduces cell proliferation. The opposite 

is true when the Hippo pathway is inhibited – YAP/Taz enter the nucleus to prevent cell death 

and increase cell proliferation (Ikeda and Sadoshima, 2016). Although the evolutionarily-

conserved mechanism plays a role in organ size, precisely controlling the heart during fetal, 

neonatal, adolescent, and adult developmental stages, the intrinsic regulation of heart size 

outside of developmental programs is not well understood. 

Mammals 

 In parallel with non-mammalian vertebrate studies, assessing multiple genetic mouse 

models also suggests the Hippo pathway mediate regeneration after mechanical resection (Zhou 

et al., 2015). Conditional knockout mouse models of various proteins involved in the Hippo 

pathway promote the possibility that the Hippo pathway also plays a role in the repair and 

regeneration of the heart. As published in a previous study, apical resection at P1 in the neonatal 
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mouse lead to complete regeneration, whereas the same surgery in a P7 neonatal mouse lead to 

extensive scarring, as expected in adult mice (Porrello et al., 2011). Investigating Hippo signaling 

during neonatal development shows that phosphorylated YAP (pYAP) levels low in P2 mice, 

suggesting a state favoring cellular proliferation, but increases sharply in P10 and P12 mice, 

suggesting a state favoring cellular apoptosis (Heallen et al., 2013). Using this information, 

conditional knockout mice were developed. Deletion of an upstream scaffold protein, Salvador 

(SAV), that stabilizes one of the earlier kinases that eventually lead to the phosphorylation of Yap, 

leads to a constitutively suppressed Hippo signal. In this case, YAP/Taz enters the nucleus to 

stimulate cell proliferation. The results of the tamoxifen-induced knockout of SAV starting at P7, 

with the apical resection surgery at P8, lead to a reduction in scar size when compared to control 

animals (Heallen et al., 2013). In the case of organ size mismatch after apical resection in the 

heart, it is proposed that mechanical stresses and mechanotransduction signaling through 

cytoskeleton and junctional proteins may regulate the Hippo pathway in this condition (Zhou et 

al., 2015). 

Implications to the Field of Cardiac Regenerative Medicine 

 Repeatable and reproducible ischemic damage in a rodent is achieved via LAD coronary 

artery ligation to mimic the pathogenesis of a myocardial infarction. To replicate the clinical 

sequalae of a patient treated to unblock the thrombus, the LAD ligation can be removed to induce 

ischemia-reperfusion injury. Regeneration after ischemia-reperfusion injury in mammals has only 

be identified in neonatal animals. Furthermore, there have been no published studies that show 

complete regeneration after ischemia-reperfusion injury in any adult vertebrates, particularly 

since non-mammalian vertebrates do not have coronary arteries to ligate. 
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 To study cardiac regeneration in adult animals, other cardiac injury models have been 

performed in zebrafish and salamanders, and translated and validated in laboratory rodents. 

These include approaches such as cryoinjury (Gonzalez-Rosa et al., 2011; van den Bos et al., 

2005), DT conditional genetical ablation (Akazawa et al., 2004; Wang et al., 2011), or apical 

resection (Porrello et al., 2011; Poss et al., 2002). Cryoinjury protocols for zebrafish (González-

Rosa and Mercader, 2012) and mice (Polizzotti et al., 2016) are available and use the same 

technique – application of a metal probe cooled using liquid nitrogen. For DT conditional ablation, 

studies in zebrafish and mice use different approaches. Wild-type mice and rats are normally 

insensitive to DT-A since the rodent cell-surface receptor (heparin-binding EGF-like growth 

factor, or HB-EGF) for DT-B cell-binding moiety does not recognize DT-B (Saito et al., 2001). To 

induce diphtheria-toxin-receptor conditional ablation, transgenic mice are designed to express 

human or monkey HG-EGF in a tissue-specific manner using an appropriate gene promoter. To 

target the heart, Akazawa et al. used the α-myosin heavy chain promoter and simply injected DT 

by intramuscular injection (Akazawa et al., 2004). Zebrafish also do not have a DT receptor. To 

facilitate a DT cardiomyocyte ablation model in zebrafish, two different transgenic zebrafish lines 

were crossed to create a Cre-lox animal: cmlc2:CreER; bactin2:loxp-mCherry-STOP-loxp-DTA. This 

zebrafish, called Z-CAT (zebrafish cardiomyocyte ablation transgenes), then proceeds to ablate 

cardiomyocytes by administering 4-hydroxy tamoxifen (4-HT) (Wang et al., 2011) to excise the 

STOP signal, and induce production of DT-A. Finally, multiple studies of apical resection in non-

mammalian vertebrates and rodents have been published, with details for zebrafish (Poss et al., 

2002) and mice (Mahmoud et al., 2014) available, with removal of ≤20% of the apex suggested 

for improved animal survival rates. 
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 The adoption of surrogate cardiac injury models in non-mammalian vertebrates provides 

evidence that animals capable of epimorphic regeneration can resolve specific cardiac injuries as 

adults. However, as described here, the signaling mechanisms for each substitute injury model 

do not fully replicate the pathophysiology due to ischemia and ischemia-reperfusion injuries. The 

injury model that best approaches ischemia-reperfusion is cryoinjury, having a stage of 

reperfusion after blood in the vasculature thaws. Although producing microvascular obstruction 

after blood begins to reflow, other injury mechanisms after traditional ischemia-reperfusion 

require viable cells to produce cellular injury by calcium overload, ROS-species overproduction, 

and acidosis reversal. Cryoinjury as applied in these model systems tend to mechanically rupture 

cells and organelles immediately upon freezing, ensuring cell death before gross tissue and blood 

begin to thaw. 

 Although providing inspiration to the field of cardiac regenerative medicine and the 

possibilities of healing serious heart injuries, the surrogate models used to date have not 

provided evidence that adult vertebrate animals can successful regenerate from clinically-

relevant ischemia and ischemia-reperfusion injuries that plagues many human patients 

worldwide. Answering this question will provide information to inform how the field proceeds 

and prioritizes tissue engineering and regenerative medicine approaches to address ischemic 

heart disease. 
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CHAPTER 5: RESEARCH STRATEGIES 

 This section details the specific approaches to address the Specific Aims. Developing a 

technique to induce an ischemic cardiac injury in the axolotl that recapitulates a myocardial 

infarction in mammals is paramount to this project. 

Choice of Model Animals 

 Zebrafish (Danio rerio) have been extensively studied as a model for cardiac regeneration 

(Jopling et al., 2010; Poss, 2007; Raya et al., 2004; Zhang et al., 2013) due to its many advantages 

in modeling human disease (Chico et al., 2008; Dooley and Zon, 2000; Kari et al., 2007). However, 

the zebrafish heart is much more primitive than mammalian hearts: zebrafish have two-

chambered hearts that currently lack any evidence of secondary heart field derivatives (Lieschke 

and Currie, 2007). With their three-chambered hearts, amphibians also exhibit physiological 

traits in common with all vertebrates including mammals (Burggren and Warburton, 2007). 

Compared to zebrafish, the closer developmental ancestry of amphibians to mammals suggest 

they are more suitable models for modeling mammalian and human diseases (Burggren and 

Warburton, 2007; Voss et al., 2011); despite anatomical differences with higher mammals, the 

embryonic development from the anterior lateral plate mesoderm (induced by the pharyngeal 

mesoderm) mirrors development in other vertebrates (Easton et al., 1994; Jacobson and Sater, 

1988). Also, epicardium development in the axolotl (Ambystoma mexicanum) is similar to the 

general pattern described for higher vertebrates (Fransen and Lemanski, 1990). Additionally, 

axolotls also have been evaluated as models for cardiac regeneration (Cano-Martinez et al., 2010; 

Roy and Gatien, 2008). 
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 Observations of axolotl regeneration have been attributed to its neotenic development 

(Roy and Gatien, 2008). Robust axolotl regeneration during juvenile stages of development is 

corroborated by observations that Xenopus species lose the ability to regenerate when they 

begin to metamorphose into an adult (Roy and Gatien, 2008; Whited et al., 2012). Moving past 

observations, the overall goal of this proposal is to elaborate a mechanistic explanation of 

differences between regeneration between non-mammalian vertebrates and higher mammals. 

Past studies have detailed robust myocardium regeneration in higher mammals, albeit only in 

very young animals (Haubner et al., 2012; Porrello et al., 2011; Rumyantsev, 1977). These studies 

confirm genetic programs for cardiac repair exist within mammalian DNA, but are somehow 

quickly suppressed after the neonatal and juvenile stages of development. 

 For comparisons to a higher mammal, the mouse has been chosen due to the wide use of 

this animal in cardiovascular disease research (Battey et al., 1999). Protocols detailing cardiac 

procedures for inducing cardiac injury such as MI are widely published (Bayat et al., 2002; Jackson 

et al., 2001; Klocke et al., 2007; Michael et al., 1995; Murry et al., 2004; Orlic et al., 2001; Salto-

Tellez et al., 2004; Tarnavski et al., 2004; Wang et al., 2006; Yue et al., 2013) and the novel model 

of cardiac ischemia can be piloted while using well-established approaches to expose the heart 

for survival surgery. 

Specific Aim 1 

Overview of Specific Aim 1 

 Develop a cardiac injury model in the axolotl that mimics the pathophysiology of a 

myocardial infarction in the mammalian heart. 
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 Analyzing cellular characteristics around the mechanically-clamped apex will provide the 

spatial mapping of necrotic, perinecrotic, and penumbral areas. Studying the labeling indices of 

cardiomyocyte proliferation [using bromodeoxyuridine (BrdU) or equivalent] uptake in these 

defined spatial regions will result in the temporal mapping of DNA synthesis activity, like those 

depicted in Figure 2. 

 Specifically, using appropriate nuclei staining of cardiomyocytes to track DNA synthesis 

and cardiomyocyte proliferation; cardiomyocyte immunohistochemistry for stem cell markers 

and/or myofibril precursors, to ascertain the differentiation stage of any proliferating 

cardiomyocytes; and visualizing sarcomeric morphology to pinpoint mature cardiomyocytes will 

provide cellular characteristics in different zones within the regenerating heart. Analyzing the 

temporal response of nucleic-acid synthesis activity from BrdU (or equivalent) labeling in the 

proliferating zone of hearts in axolotls will also help to reconfirm past studies of cell-cycle kinetics 

during regeneration (Rumyantsev, 1977; Rumyantsev and Carlson, 1991) [Figure 2, adapted 

(Rumyantsev and Carlson, 1991)] in higher vertebrates. Elucidating the clinically relevant 

A)  B)  
Figure 2: Pulse 3HTdR labeling after ventricular injury. 
A) Data from 13-day-old rats and B) in frog myocyte nuclei from perinecrotic myocardium. 
Vertical Axis – Labeling Index, Horizontal Axis – Days after injury [Upper number in (a)] 
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spatiotemporal patterns of tissue characteristics is important since studies in the regenerating 

axolotl limb show varied patterns of gene expression by region and time within the regenerating 

limb blastema (Jhamb et al., 2011; Stewart et al., 2013). 

Rationale of Specific Aim 1 

 Salamanders, including axolotls, have been extensively studied as model organisms for 

tissue regeneration (Brockes, 1997; Cano-Martinez et al., 2010; Chalkley, 1954; Hay and 

Fischman, 1961; Khattak et al., 2013; Monaghan and Maden, 2012; Neff et al., 1996; Rose, 1948; 

Rose and Rose, 1952; Roy and Gatien, 2008; Simon, 2012; Singh et al., 2010; Sobkow et al., 2006; 

Voss et al., 2009; Whited and Tabin, 2010; Whited et al., 2013). Older studies observed gross 

changes in anatomy and histology (Chalkley, 1954; Hay and Fischman, 1961; Rose, 1948) ; more 

recently, regeneration has been examined using modern molecular tools (Khattak et al., 2013; 

Monaghan and Maden, 2012; Sobkow et al., 2006; Whited et al., 2012; Whited et al., 2013). As 

stated in the overview to Specific Aim 1, the goal of this study is to understand the fundamental 

cardiomyocyte biology following ischemic injury. The standard approach to induce repeatable 

and reproducible ischemic damage in a rodent is to perform a left anterior descending (LAD) 

coronary artery ligation to effectively recapitulate the pathogenesis of an atherosclerotic 

infarction in a human (Salto-Tellez et al., 2004; Wang et al., 2006). However, performing the same 

procedure is impossible in amphibians. Phylogenetically less evolved, amphibians have 

trabeculated ventricular myocardium (Stocum, 2006). Instead of relying upon coronary arteries 

to nourish the beating ventricular myocardium, oxygen and nutrients in the blood infiltrate the 

numerous sinuses formed by the myocardial trabeculations (Reese et al., 2002; Stocum, 2006). 

Therefore, for purposes of translating the findings in the axolotl to mammalian species, 
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developing an identical approach to inducing myocardial ischemia in both animals is paramount 

to the success of this plan of work. 

 To induce cardiac injury in model animals without coronary arteries, methods such as 

cryoinjury (van den Bos et al., 2005), diphtheria-toxin-receptor conditional ablation (Akazawa et 

al., 2004), or apical resection (Porrello et al., 2011; Poss et al., 2002) have been implemented. 

Although these approaches result in serious cardiac tissue trauma or cardiac function, the injury 

processes do not recapitulate the pathogenesis of cellular dysfunction akin to ischemia-induced 

cardiac tissue necrosis. This leads to tissue histology that is dramatically different from healing 

infarcted tissue. First and foremost, ischemia is not the main factor in the previously mentioned 

techniques; subjecting at-risk and surrounding tissue to a state of normoxia will lead to different 

profiles of gene expression and signaling cascades versus tissues in an environment of ischemia-

induced hypoxia. Additionally, each approach causes cell death in different manners. In 

cryoinjury-induced trauma, cells experience acute cell death immediately upon freezing due to 

the formation of intracellular and extracellular ice crystals that pierce the plasma membrane 

(Mazur, 1970). Wild-type mice and rats are normally insensitive to diphtheria-toxin fragment A 

(DT-A) since the rodent cell-surface receptor (heparin-binding EGF-like growth factor, or HB-EGF) 

for the diphtheria-toxin fragment B (DT-B) cell-binding moiety does not recognize DT-B (Saito et 

al., 2001). Therefore, in diphtheria-toxin-receptor conditional ablation, transgenic mice are 

designed to express human or monkey HG-EGF in a tissue-specific manner using an appropriate 

gene promoter. Once able to enter the cell of interest, DT-A inactivates elongation factor 2 (EF-

2) inhibiting protein synthesis (Saito et al., 2001) and consequently cleaving the internucleosomal 

DNA (Chang et al., 1989) leading to cell death. In both instances, the cellular response to these 
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forms of cellular injury are drastically different from the cascade of cellular death in ischemia-

induce necrosis [see Figure 1, adapted (Lilly, 2011)]. Therefore, the concept of mechanically 

clamping the apex of the heart is proposed to prevent perfusion of cardiac tissue to recapitulate 

an ischemic environment (inadequate blood flow to the beating ventricular myocardium) for the 

desired pathogenesis (ischemia-induced cellular necrosis) and tissue pathology (myocardial 

infarction). 

General Approach of Specific Aim 1 

 The concept of mechanically clamping the apex of the heart is proposed to prevent the 

local perfusion of cardiac tissue. This should recapitulate an ischemic environment (inadequate 

blood flow to the beating ventricular myocardium) for the desired pathogenesis (ischemia-

induced cellular necrosis) and tissue pathology (myocardial infarction). Prior studies on cardiac 

regeneration in axolotls do not contain complete details on performing open thoracotomies 

(Cano-Martinez et al., 2010) in these animals and the pre-, peri-, and post-operative care that is 

required to ensure animal welfare following major survival surgery. Additionally, since this is a 

novel technique, no prior guidance is available on the appropriate tools and technique to perform 

a mechanically-induced cardiac ischemic injury. 

 While developing surgical procedures to induce a myocardial infarction in axolotls, 

guidance on analgesics in amphibians for appropriate animal welfare was lacking. Federally 

funded animal research must adhere to the Public Health Service Policy on Humane Care and Use 

of Laboratory Animals, which states that “procedures that may cause more than momentary or 

slight pain or distress to animals will be performed with appropriate sedation, analgesia, or 

anesthesia” unless the procedure is justified for scientific reasons in writing by the investigator 
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(National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use 

of Laboratory Animals. et al., 2011). Given the nature of regenerative medicine research, animals 

are frequently subjected to surgical injury to observe the healing process. Potential experimental 

confounders include the impact of opioids on wound healing (Chrastil et al., 2013) and the effects 

of stress, pain, and pain-induced stress on immune function. 

 Mexican salamanders (axolotls), Ambystoma mexicanum, require simple husbandry and 

straightforward maintenance to keep animals well and healthy. In addition to their ease of care, 

their versatility as a research model to study developmental biology and tissue regeneration has 

led to their active use in laboratory research since the 1860s (Farkas and Monaghan, 2015). Over 

the years, much has been published about the general anatomy, biology, and behavior of 

axolotls. However, while being used for more than 150 years in regeneration studies, regularly 

involving painful procedures like limb amputation, guidance is lacking on the use of analgesics in 

amphibians to provide appropriate animal welfare. 

 Although amphibians are specifically excluded from guidelines in the Animal Welfare Act 

(AWA) (States, 2013), their status as vertebrates subjects their use in research activities to be 

regulated by Public Health Service (PHS) policy (Alworth and Harvey, 2007). Under the umbrella 

of PHS policy, the following documents require that every opportunity to minimize pain and 

distress are explored: the 1985 U.S. Government Principles for the Utilization and Care of 

Vertebrate Animals Used in Testing, Research, and Training (Committee, 1985); the 2011 Guide 

for the Care and Use of Laboratory Animals (Council, 2011); and the 2015 reprint of PHS Policy 

on Humane Care and Use of Laboratory Animals (Welfare, 2015). Furthermore, not only is animal 

welfare a concern, but pain, stress, and pain-induced stress have been known to affect overall 
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health and wound healing in animal and human patients (Christian et al., 2006; Glaser and 

Kiecolt-Glaser, 2005; Godbout and Glaser, 2006; Guo and Dipietro, 2010; McGuire et al., 2006; 

Soon and Acton, 2006; Vileikyte, 2007). Many diseases such as cardiovascular disease, cancer, 

diabetes, and compromised wound healing can be traced to dysregulation of the immune system, 

mediated by the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary 

(SAM) / sympathetic nervous system (SNS) (Glaser and Kiecolt-Glaser, 2005; Guo and Dipietro, 

2010). Therefore, to maintain animal welfare and minimize confounds in studying tissue 

regeneration in axolotls, appropriate analgesia is crucial. 

 Opioid receptor activation leads to a variety of effects, including analgesia, euphoria, 

feeding, hormone secretion, respiratory depression, reduction in gastrointestinal mobility, 

anxiolysis, and immune system modulation (Waldhoer et al., 2004). Focusing on tissue repair and 

the immune system, morphine, the prototypical μ-opioid receptor (OP3) agonist, increases 

corticosteroid secretion and decreases natural killer cell activity (Hugunin et al., 2010; Odunayo 

et al., 2010). Overall, morphine administration leads to a dose-dependent suppression of T-cell 

proliferation with an increase in proinflammatory cytokines and a decrease in anti-inflammatory 

cytokines (Odunayo et al., 2010). However, studies have demonstrated that buprenorphine can 

be safely used in models of sepsis in mice (Hugunin et al., 2010) since buprenorphine has been 

shown to have less of an impact on the immune system compared with other opioid analgesics 

(morphine). However, this relationship has not been established in amphibians. Since it has been 

demonstrated that the immune response is directly involved in healing and regeneration in 

axolotls (Godwin et al., 2013; Godwin and Rosenthal, 2014), the impact of the dose-dependent 

use of opioids on tissue regeneration should be elucidated. Furthermore, not only can opioid 



www.manaraa.com

60 

 

signaling play a role in tissue regeneration through immune system mechanisms, opioids have 

been known to directly provide cardioprotective effects through μ-opioid receptor stimulation. 

Multiple published studies in rats and rabbits regarding morphine preconditioning and 

postconditioning show that this opioid attenuates infarct size after ischemia-reperfusion injuries. 

(Chen et al., 2008; Groban et al., 2004). 

 Available studies covering analgesia use in amphibians have used frogs (Xenopus laevis 

and Lithobates pipiens) and newts (Notophthalmus viridescens). However, a recent book chapter 

(Farkas and Monaghan, 2015) cautioned the direct application of amphibian protocols and 

findings in different species for procedures used on axolotls, citing that although they are all 

amphibians, the different species are not closely related. Frogs are distantly related to urodeles 

(any order of amphibians that have a tail throughout life such as salamanders), diverging from a 

common ancestor about 260 million years ago (Farkas and Monaghan, 2015). Similarly, although 

newts and axolotls are both urodeles with similar superficial anatomy, they diverged from a 

common ancestor about 145 million years ago (Farkas and Monaghan, 2015). This divergence is 

evidenced by the fact that newt regeneration and axolotl regeneration after limb injury is driven 

by different mechanisms (Sandoval-Guzman et al., 2014). With sufficient differences in 

physiology, a study on the appropriate analgesia and their administration (dosage and frequency) 

in axolotls is warranted. 

 This study aimed to elucidate two objectives: 1) determine an appropriate dosage and 

frequency of administration between two commonly studied analgesics in amphibians - an 

injected (intracoelomic route) mixed partial opioid-receptor agonist-antagonist [buprenorphine 

(Lutfy and Cowan, 2004)] with a transcutaneously-delivered mixed partial opioid-receptor 
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agonist-antagonist [butorphanol (Schnellbacher, 2010)] to provide pain relief after noxious 

somatic and/or visceral stimuli; and 2) determine whether, and to what degree, opioid analgesics 

affect tissue healing and regeneration in an axolotl surgical model. Literature searches reveal 

few, published scientific studies investigating general signs of pain or distress in axolotls. Thus, 

to achieve the study objectives, methods to objectively and subjectively characterize behavior 

after noxious stimuli were also developed. 

Animals 

Mouse (Mus musculus): 

 Mice are housed per Wayne State University (WSU) Institutional Animal Care and Use 

Committee (IACUC) and WSU Division of Laboratory Animal Resource (DLAR) standard operating 

procedures. For details, please see APPENDIX B: IACUC & DLAR DOCUMENTATION – ANIMAL 

PROCEDURES. 

Axolotl (Ambystoma mexicanum): 

 Male, adult, breeding and non-breeding wild-type axolotls (>60g) were purchased from 

the Ambystoma Genetic Stock Center (University of Kentucky; Louisville, KY). The animals are 

individually housed in open top polypropylene, static, mouse cages (19.0” X 10.5” X 6.125”). For 

environmental enrichment purposes, a single commercial rodent tunnel or 2” schedule 40 PVC 

pipe (~ 6-8” in length) is placed in the cage; enough 50% Holtfreter’s solution (Armstrong and 

Malacinski, 1989; Hamburger, 1942) (5-6 liters) is added to cover the rodent tunnel to allow the 

axolotls free ability to swim into and hide in the tunnel. Tap water is treated using Kordon® water 

conditioner NovAqua® Plus™ and ammonia detoxifier AmQuel® Plus™ (Kordon LLC; Hayward, 

CA). The 50% Holtfreter’s solution is made by mixing the appropriate amounts of salts (1.75 g 
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NaCl, 0.050 g CaCl2, 0.025 g KCl, and 0.100 g NaHCO3 to each liter of treated tap water) using a 

55-gallon drum mixer in a clean container (e.g. commercial 44-gallon trash can) with the treated 

tap water, allowing the solution to age at least 24-hours to allow the Kordon® products to 

condition the tap water and allow chlorine to outgas (container was kept partially uncovered ~24 

hours to allow chlorine outgassing). Before using, the quality of each batch of 50% Holtfreter’s 

solution is checked using EasyStrips™ 6-in-1 Aquarium Test Strips and Ammonia Test Strips (Tetra; 

Blacksburg, VA). The animals are housed in a windowless room to prevent exposure to natural 

light that facilitates algae growth, instead using a 12:12-h artificial light:dark cycle (using standard 

fluorescent lighting) with an ambient temperature between 15-19°C (~59-66°F). Animals are fed 

ad libitum a diet of sinking Soft-Moist Salmon Diet (Rangen; Buhl, ID) three days a week (Monday, 

Wednesday, and Friday), allowing up to 2 hours for the animals to feed as adult axolotls exhibit 

low levels of activity when left undisturbed. Immediately after feeding, animals are transferred 

to new plastic rodent cages; tunnels are rinsed and replaced weekly. All axolotls are checked daily 

for overall health, inspecting the condition of gills and dorsal fin for signs of stress, along with 

observing for the presence of feces to ensure appropriate GI function. All animals are acclimated 

to laboratory conditions for 5 days before performing any experimental procedures. All animal 

use was approved by WSU’s IACUC. 

Mechanically-Induced Ischemia 

Approach to Clamping of Cardiac Apex 

 The original IACUC A 02-02-14 Protocol and updated eProtocol 16-12-173 (see APPENDIX 

B: IACUC & DLAR DOCUMENTATION – ANIMAL PROCEDURES) provide general details concerning 
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the approach and methodologies to mechanically clamp the heart. As a novel approach to model 

ischemia in an animal without coronary arteries, further details are provided here. 

 No animals will undergo more than one major surgical procedure. All animal use was 

approved by Wayne State University’s (WSU) Institutional Animal Care and Use Committee 

(IACUC). Under the guidance of WSU’s veterinarians and Division of Laboratory Animal Research 

(DLAR), research was conducted in compliance with the Animal Welfare Act (States, 2013), 

principles stated in the Guide for the Care and Use of Laboratory Animals (Council, 2011) and 

other federal statutes and regulations relating to vertebrate animals and experiments involving 

vertebrate animals. WSU is fully AAALAC-accredited and NIH/PHS-accredited. 

Mouse (Mus musculus): 

 Thoracotomies are commonly performed in mice. The steps listed in IACUC Protocol A 02-

02-14 and eProtocol 16-12-173 are taken from various publications (Azhar et al., 1999; Bernal et 

al., 2009; Yang et al., 2002). The novel portion in this research project is the mechanical clamping 

of the apical portion of the mouse heart. Once the thoracotomy is performed and the ribs are 

retracted to expose the mouse’s heart, the same setup using a single microvascular clamp 

described for the axolotl is used in the mouse. Male and female mice were used for pilot studies. 

To confirm development of pathology, if the mouse survived the ischemic event, at least five days 

elapsed before euthanasia and harvesting the heart for histological studies. Male and female 

mice were used for pilot studies. To confirm development of pathology, if the mouse survived 

the ischemic event, at least five days elapsed before euthanasia and harvesting the heart for 

histological studies. Please see Figure 3 for an overview of how the surgical instruments are 

arranged during the described surgery. 
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 The difficulty in replicating the same injury in the mouse was finding a clamp that could 

produce sufficient force to grasp the compact myocardium of the mammalian heart, yet was 

gentle enough for the spongy, trabeculated myocardium of the axolotl. Additionally, it was found 

that grasping too much of the apex of the mouse’s heart lead to fatal arrhythmias about 15-18 

minutes into the procedure, a few minutes shy of the 20 minutes of ischemia needed for 

irreversible myocardial cell damage and cell death in mammalian hearts(Robbins et al., 2010). 

Thus, various trials of clamping methods and clamp types were completed with unsuccessful 

results. The microvascular clamp from Fine Science Tools (Cat. No. 00398-02), produced 

successful results in the mouse. This allowed us to pursue experiments in the axolotl. 

Axolotl (Ambystoma mexicanum): 

 Animals are fasted for at least 24 hours to avoid emesis during anesthesia induction. 

About one hour prior to inducing anesthesia, 0.5 – 0.75 mg/L of butorphanol is administered 

directly into the 50% Holtfreter’s solution in the animal’s cage to provide analgesia. Anesthesia 

is induced by placing the axolotl in a bath of 0.1% tricaine methanesulfonate (MS-222 or Tricaine-

A)  B)  
Figure 3: Layout of surgical instruments for mechanically clamping the heart in a mouse. 
A) General view of instrument layout. B) Slightly zoomed in view of surgical site. Rib spreaders 
allow visualization and access to apex of the heart. Lightly wiping the apex with a cotton 
applicator allows microvascular clamp to more easily grasp heart. 



www.manaraa.com

65 

 

S; Western Chemical, Inc., Ferndale, WA) dissolved in 50% Holtfreter’s solution. After reaching a 

surgical plane of anesthesia, anesthesia is maintained by covering the animal in gauze sponges 

or Kimwipe™ laboratory tissues moistened with the same 0.1% MS-222 in 50% Holtfreter’s 

solution. Every 10 minutes during the surgical procedure, an additional 3 – 5 mL of 0.1% tricaine 

methanesulfonate are squirted onto the gauze or tissues and on the animal’s gills. Animals are 

kept in place in a dorsal recumbent position using rolled paper towels held to their shape using 

surgical tape. The rolled paper towel “chocks” keep the animal from rolling to either side during 

surgery. 

 Once a surgical plane of anesthesia is maintained, the ventral surface of the thorax is 

disinfected by placing gauze soaked in chlorhexidine solution (0.75%) or benzalkonium solution 

(2 mg/L) for 3 – 5 minutes at the intended site of incision followed by irrigation with sterile water 

or amphibian saline (0.63% NaCl). The concentration of amphibian saline was calculated from the 

plasma osmolarity of the axolotl (Hronowski and Armstrong, 1977). With the animal in a dorsal-

recumbent position, a 10 – 15mm paramedian ventral thorax-area incision will be made with a 

#22 blade (amphibian integument is thin, but very tough (Wright, 2000)) on the animal’s right or 

left side to prevent damaging the pectoral girdle. Advance the cut about 10 mm caudal to the 

gular fold (line of fusion between the larval gill cover and the skin, providing a demarcation 

between head and pectoral region(Francis, 1934)). A skin flap is made by using microsurgical 

scissors to create two cuts perpendicular to the ends of the initial incision to a similar landmark 

on the animal’s lateral side, providing access to the pectoral girdle. The skin flap is made large 
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enough such that it lays open strictly due to gravity and surgical tools or clamps are not needed 

to maintain access. Please see Figure 4 for an example of how the animal presents after this step. 

 The coracoid region, the largest portion of the pectoral girdle, consists of right and left 

aspects of coracoid cartilage [see Figure 5 (Francis, 1934)]. These flaps extend across two-thirds 

of the width of the axolotl’s body from the attached forelimb, thereby overlapping each other in 

the middle. Either left or right aspect can be superficial or deep to its respective counterpart. 

Forming a semi-circular plate, with its convex side facing ventrally, the coracoid region forms a 

“breastplate” to protect the animal’s pectoral region. The connective tissue that attach the left 

and right aspects of the coracoid cartilages can be bluntly dissected away with micro scissors, 

allowing each coracoid cartilage to be rotated out of the way to expose the animals rostral 

portion of its ventral trunk. After rotating the coracoid cartilages out of the way, they can be held 

 
Figure 4: Access to axolotl pectoral cavity 
Creation of skin flap provides access to underling coracoid cartilage. 
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open using ultra fine hemostats (Fine Science Tools, Cat. No. 13021-12, or equivalent); 

compression of the cartilage will occur but this will not affect clinical outcomes. 

 After the left and right aspects of coracoid cartilage are rotated out of the way, the 

animal’s pectoral cavity is exposed. Retraction of the two aspects of coracoid cartilage can be 

accomplished using curved forceps (Fine Science Tools, Cat. No. 11017-17, or equivalent) placed 

between the ultrafine hemostats (insert forceps in the closed position) with the natural opening 

tension sufficient to retract the two aspects of coracoid cartilage. Within this cavity, the 

pericardium is immediately visible, a tough, fibrous, and semi-transparent membrane that forms 

a pericardial cavity around the heart. Grasp the pericardium with fine forceps and hold it away 

from the beating heart to prevent damaging the heart while creating incision into pericardium. 

Using fine or microsurgical scissors, an incision is made in the pericardium to provide access to 

 
Figure 5: Anatomy of axolotl pectoral girdle. 
From Plate IV in The Anatomy of the Salamander (Francis, 1934). Important features include: 
c.cor = coracoid cartilage and c.pr.cor = procoracoid cartilage. 
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the axolotl’s heart. To provide retraction of the incision, curved forceps (Fine Science Tools, Cat. 

No. 11017-17, or equivalent) can be placed into the incision (insert forceps in the closed position) 

with the natural opening tension sufficient to retract the pericardium. With the heart now visible, 

a single microvascular clamp (Fine Science Tools, Cat. No. 00398-02, or equivalent) is carefully 

placed to clamp the apical portion of the heart. The heart tissue should immediately blanch, 

indicating a lack of blood flow to the area. This approach of clamping the heart to mechanically 

induce ischemia is adapted from a method to stabilize the heart during surgeries to repair 

penetrating cardiac wounds (Grabowski et al., 1995). Please see Figure 6 for an overview of how 

the surgical instruments are arranged during the described surgery. 

 After sustaining ischemia for the recommended amount of time, rinse the cardiac cavity 

as necessary with sterile amphibian saline or sterile Lactated Ringer’s solution and approximate 

and close the pericardial sac with one loop of a 6-0 monofilament, non-absorbable suture tied 

with a simple surgeon’s knot. Best results with closing surgical sites during the development of 

this surgical protocol were obtained with Novafil™ sutures (Monofilament Synthetic Polybutester 

A)  B)  
Figure 6: Layout of surgical instruments for mechanically clamping the heart in an axolotl. 
A) Ultra-fine hemostats hold the two coracoid cartilage structures in positions rotated away 
from the pericardial cavity. The curved forceps at the top and bottom of the figure provide 
traction on the pericardium, allowing unobscured access to the heart. The base of the heart 
is clamped with an S&T vascular clamp. B) A side view of the surgical procedure showing a 
different view of the surgical instruments and the vascular clamp in place. 
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Suture; Covidien, New Haven, CT) for acute procedures or Biosyn™ sutures (Monofilament 

Synthetic Glycomer™ 631 Suture; Syneture, Norwalk, CT) for chronic procedures. Moisten the 

pectoral cartilage that is held with the ultra-fine hemostats to prevent tearing the cartilage from 

the hemostat’s jaws. For acute procedures, the skin is closed using an everting suture pattern (to 

prevent keratin cysts (Gentz, 2007; Wright, 2000)) with non-absorbable, monofilament sutures. 

For chronic procedures, the skin is closed using absorbable, monofilament sutures. 

 Though aseptic surgical techniques are used, after closing the animal, a single dose (5 

mg/kg) of enrofloxacin (Baytril®; Bayer DVM, Shawnee Mission, KS) is administered post-

operatively as amphibian procedures are considered “clean-contaminated” at best. The 

enrofloxacin is diluted to 5 mg/mL using sterile amphibian saline. Additionally, post-operative 

fluids (sterile amphibian saline) are administered at a dose of 10 mL/kg (Gentz, 2007). Animals 

are thoroughly rinsed in fresh 50% Holtfreter’s solution and then returned to their home cage to 

continue exposure to butorphanol as the animal recovers from anesthesia. Post-operative 

analgesia continues for 48-72 hours. 

Post-operative care and procedures: 

 Food is offered starting on postoperative day 1 (surgical procedure is day 0). The surgical 

wound is assessed daily for any complications. For 3-5 days following surgery (as allowed by each 

experimental schedule), the animals are assessed for signs of stress and infection. Additional 

injections of enrofloxacin are provided if signs of stress or infection are present. Most animals 

show no signs of post-surgical infection as Holtfreter’s solution helps inhibit the growth of 

bacteria, fungi, and parasites (Wright and Whitaker, 2001). 
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 For nuclei labeling index studies to detect cardiomyocyte proliferation and turnover, each 

animal is injected with BrdU [250 mg/kg, intracoelomic] (Cano-Martinez et al., 2010) at least 

three hours prior to euthanasia and heart collection. BrdU is soluble in water up to 10 mg/mL 

without the use of heat. To dissolve BrdU, it is suggested to use sterile amphibian saline for 

injection into axolotls. 

Time for Ischemic Damage: 

 The length of time needed to induce ischemic damage in the axolotl heart to recapitulate 

a myocardial infarction and the subsequent ischemia-reperfusion injury is unknown. As part of 

developing this novel cardiac injury model, experiments will start with inducing a 20-minute 

ischemic event prior to euthanizing the animal. Depending upon the histopathologic results from 

simple stains like H&E and Gomori’s/Masson’s trichrome stains (Gomori’s usually counterstains 

collagen green, Masson’s usually counterstains collagen blue), the amount of time for ischemia 

will be adjusted upward. 

GLAS Experiment 1 – Validate Quantitative Methods to Evaluate Nociception in Naïve 

Animals 

 While there are several demonstrated differences between frogs, newts, and 

salamanders, it has been shown that A- and C-nociceptive fibers are present in most vertebrate 

animals, including amphibians (Coble et al., 2011; Hamamoto and Simone, 2003; Sneddon, 2014). 

Although axolotls are classified in a different family and order from newts and frogs respectively, 

it is expected that pain receptors are likely conserved within the class. However, nociceptor fiber 

distribution and number may vary (Sneddon, 2014). Previous studies in frogs (Rana pipiens and 

Xenopus laevis) have described mechanical (manual von Frey [vF] aesthesiometers), thermal, and 
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chemical (acetic acid test [AAT]) methods to assess pain and analgesic efficacy (Willenbring and 

Stevens, 1996). A recent study in newts (Koeller, 2009) (Notophthalmus viridescens) used 

qualitative behavioral observations to show the efficacy of opioids (buprenorphine and 

butorphanol) after limb amputation. Therefore, qualitative quantitative assessment methods 

and can be used in axolotls, but will likely need to be modified to produce a repeatable result 

within this species. Preliminary studies were conducted with a small number of axolotls using vF 

aesthesiometers (Touch Test Sensory Evaluator; Stoelting, Wood Dale, IL) and acetic acid testing 

to evaluate response to noxious mechanical and chemical stimuli (see APPENDIX A: PILOT 

STUDIES AND SUPPLEMENTARY INFORMATION for further details on Quantitative Pain 

Assessments). These studies have shown a clear, behavioral response to noxious stimuli and 

demonstrated the technical feasibility of adapting vF evaluators and the AAT to axolotls. Based 

upon these preliminary results, quantitative measurements will be used to optimize an opioid 

analgesic regimen to use in a surgical model in axolotls. 

 For this experiment, the two different quantitative techniques will be evaluated in naïve 

axolotls to determine which method produces more consistent responses. Each technique (vF or 

AAT) will be evaluated with the same group of six animals. The animals’ response to noxious 

mechanical and chemical stimulation will be measured to establish a baseline response. The 

nociception threshold is defined as the weakest force or concentration that elicits a behavioral 

response. The quantitative method which produces the most repeatable measurements will 

determine which technique will be utilized in subsequent experiments. Details of how each 

quantitative test are performed can be found in the Quantitative Pain Assessments section of 

APPENDIX A: PILOT STUDIES AND SUPPLEMENTARY INFORMATION. 
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GLAS Experiment 2 – Determine Optimized Analgesia 

 The effects of different doses of butorphanol and buprenorphine on qualitative 

behavioral parameters and quantitative pain assessments to noxious stimuli was evaluated 

before and after the use of analgesia. The schedule of assessments is outlined in Table 1 (see 

APPENDIX A: PILOT STUDIES AND SUPPLEMENTARY INFORMATION for details on Quantitative 

Pain Assessments and Behavioral Assessments). Six animals were assigned to each analgesic 

group, buprenorphine or butorphanol, at three different doses (low [L], medium [M], or high [H] 

dosage). Buprenorphine (Penro Specialty Compounding; Colchester, VT) is administered at one 

of three doses (Low = 25 mg/kg, Medium = 50 mg/kg, High = 75 mg/kg) as an intracoelomic (IC) 

injection every 24-hours for 48 hours. Butorphanol (MWI Veterinary Supply; Boise, ID) shall be 

administered at one of three concentrations (Low = 0.25 mg/L, Medium = 0.50 mg/L, High = 0.75 

mg/L) directly into the 50% Holtfreter’s solution of the animal’s cage every 24-hours for 48 hours. 

The medium dose is based upon a published dose that was effective in newts (Koeller, 2009) 

while the low and high doses are 50% lower or higher, respectively. 

 Following the study schedule outlined in Table 1, axolotls were subject to qualitative and 

quantitative tests to assess their behavior before and during administration of control 

(amphibian saline) or treatment drugs. Around 24-hours prior to administration of any study 

compounds, each group of six axolotls were tested for baseline behavioral and quantitative 

behavior. The next day, the study would commence with the operators (two for behavioral 

testing and one for quantitative testing) kept blind to the treatment. 
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Table 1: Study schedule for each dose (L, M, and H) in Experiment 2. 

Test 
Baselin
e 

Analgesia Assessments Analgesia Assessments 

-24h 0h 1h 6h 12h 24h 25h 31h 36h 48h 

Quantitative ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

Cageside ✓  ✓ ✓   ✓ ✓   

Video ✓ (x2)*  ✓  ✓ ✓   ✓ ✓ 

Feeding ✓   ✓    ✓   

*Two measures in 24 hours 

 To keep the operators blinded to treatment, the study supervisor would draw and 

uniformly mark each syringe (e.g. with the identifying animal information), draw equal volumes 

of control or study drug for injection and control or study drug for immersion bath. Although 

each animal was only assigned one treatment, each animal received an injection of drug or 

control and administration of drug or control into the home tank. This was to ensure no operator 

knew if an animal was being treated with an injection- or immersion-based treatment. 

GLAS Experiment 3 – Evaluate Optimal Analgesic Dose in a Surgical Model in Axolotls 

 Three surgical groups of animals (6 per group, receiving either butorphanol, 

buprenorphine, or no analgesic) will undergo mechanical induction of cardiac ischemia. Please 

see  – ANIMAL PROCEDURES for specific details on performing the surgeries. Using data from 

Experiment 2, animals will receive optimized analgesic doses. The same evaluation criteria and 

 
Figure 7: Goal of Analgesia Administration and Coverage 
Analgesics were administered just prior to surgery and twenty-four hours later. Based on 
axolotl husbandry standard operating procedures, animals given butorphanol directly in the 
cage water were exposed up to seventy-two hours from surgery. 
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schedule (behavioral and quantitative methods) that were used in Experiment 2 will be used in 

Experiment 3 however the 0-hour time point will be designated as the point of recovery from 

anesthesia. 

GLAS Experiment 4 – Evaluate Histologic Differences in Healing: Control & Analgesia 

 Three surgical experimental groups (buprenorphine, butorphanol, or no analgesia) of 

naïve axolotls will undergo mechanical induction of cardiac ischemia using the same doses 

utilized in Experiment 3. Please see APPENDIX B: IACUC & DLAR DOCUMENTATION – ANIMAL 

PROCEDURES for specific details on performing the surgeries. Each experimental treatment 

group will consist of 18 animals; 6 will be humanely euthanized at each of three post-operative 

time points (12 hours, 2 days, and 7 days). These time points were selected based upon 

observations from pilot studies we have performed examining cardiac histology in axolotls 

following mechanical ischemic injury. Following euthanasia, cardiac tissue will be collected for 

histologic processing and analysis. Quantitative and behavioral assessments will be performed as 

described in Table 1 for each group as allowed until the time of euthanasia. 

 Harvested hearts will be fixed in formaldehyde-zine fixative and sent to a third party for 

processing (Histowiz, Inc., Brooklyn, NY). Mounted sections will be stained using hematoxylin and 

eosin (H&E), Masson’s Trichrome and Picrosirius Red methods. Staining times will be optimized 

by the third party to ensure good contrast in axolotl tissue. Cellular proliferation activity in the 

penumbra will be indexed by staining with antibodies specific for BrdU, while cell death will be 

tracked by proxy using TUNEL – these staining protocols will also be optimized by the third party. 

Studies of cardiac myofibrillogenesis describe the myofibril assembly process as a transition 

through three types of fibrils: premyofibrils containing non-muscle myosin IIB; nascent myofibrils 
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containing both non-muscle myosin IIB and muscle-specific myosin II; and mature myofibrils 

containing only muscle-specific myosin II (Rhee et al., 1994). All tissue samples will be stained 

with antibodies for proteins of myofibrillogenesis and stem cell markers; 10 high-powered views 

will be evaluated under microscopy to observe statistical differences in histology. 

Histological Analysis 

 Histology sections will be viewed at various zooms. The reported results will exclude the 

10X zoom of the eyepiece. 

Statistical Analysis 

 The intraclass correlation coefficient statistical test can be used to assess the consistency 

of a measuring tool to quantify the same phenomenon under the same conditions. This statistical 

tests assesses how closely measurements of the same phenomenon on the same subject 

resemble each other (Shrout and Fleiss, 1979). The data regarding which mechanical probe or 

acetic acid vial produced a response was gathered by a single rater. Additionally, there is no 

dependence of order or score pairing on the outcome measures. Therefore, in SPSS, a one-way 

random model is used when calculating the intraclass correlation coefficient. Intraclass 

correlation coefficients (ρ) of ρ = 1 measures perfect test-retest reliability while a ρ = 0 suggests 

the measurement test has no reliability. An ANOVA within each test group is also run to make 

sure there are no outlier responses among the tested animals. Of note, an ANOVA assessment 

between the reliability measures between the von Frey evaluators and the acetic acid test is not 

applicable because this would be comparing means of two different outcome measures. An 

ANOVA is intended to compare means of the same outcome measure between different 

populations. 
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 For the qualitative behavioral tests, animals were scored using a Likert-style system (0-3; 

no response, minor response, nominal response, and major response) for all measures except for 

feeding, which was simply dichotomous (yes or no), developed from observations during pilot 

studies. These observations are ordinal, except for feeding which is categorical. For the 

quantitative tests, the logarithmic dilutions of acetic acid were assigned vial codes. The 

logarithmic concentrations were mapped to an interval scale that includes 0 (0-15). Although the 

data are interval, since they are not normally distributed, a non-parametric statistical approach 

is used. When evaluating the efficacy of a control or treatment effect, the change (delta or Δ) in 

quantitative or qualitative response is referenced to the baseline measurement. Thus, the 

statistic that is being evaluated is change in response. Findings from qualitative testing, including 

change in feeding, are included to see if analgesics change behavior – they are not indicative of 

the efficacy of analgesia. 

 For pathology evaluations, multiple views for each section were inspected by an outside 

veterinary pathologist blind to treatment and time groupings. After gaining familiarity with the 

samples, a Likert-style ordinal scale was created to describe the histologic features under review. 

Only immunohistochemistry slides identifying TUNEL and BrdU and simple stains identifying 

heterophils, and lymphocytes were evaluated. Please see APPENDIX A: PILOT STUDIES AND 

SUPPLEMENTARY INFORMATION section for more information on the qualitative behavior and 

pathology scoring rubrics. In Kruskal-Wallis statistical testing, the test statistic used for 

hypothesis testing is the mean rank. This rank-based nonparametric approach is used to 

determine if there are statistically significant differences between two or more groups of an 

independent variable (e.g. treatment group) on an ordinal (or continuous) dependent variable 



www.manaraa.com

77 

 

(e.g. pain assessment). The theory behind using mean ranks rather than the mean of the 

measured outcome is that the distribution of scores in each treatment group are not known a 

priori and are not assumed to be identical. Dependent outcomes are ranked, irrespective of the 

group, per the outcome’s magnitude; small magnitudes have lower ranks while greater have 

higher ranks. 

 With the qualitative measurements and pathology assessments recorded as ordinal data 

along with the recoding of a non-normal (logarithmic) scale to an interval scale, the significance 

of treatment effects for qualitative and quantitative data at each time point are assessed by 

Kruskal-Wallis one-way analysis of variance (ANOVA) for unrelated samples. If the omnibus test 

shows significance, post-hoc comparisons are run using Mann-Whitney tests for qualitative and 

quantitative data on a succinct set of tests (compared to control treatment) to prevent inflation 

of Type-I error rates. For pathology assessments, a subset of hearts was sent for staining and 

immunohistochemistry processing (Histowiz, Inc., Brooklyn, NY), thus reducing the sample size 

compared to qualitative and quantitative testing. Post-hoc comparisons for pathology scores are 

evaluated using two-sample Kolmogorov-Smirnov Z testing. At most, two post hoc tests will be 

performed (Control to Treatment 1 and Control to Treatment 2) so the critical level of significance 

in post-hoc testing is corrected (for multiple comparisons) from αcritical = 0.05 to αcritical = 0.05/2 = 

0.025. For feeding behavior, we have the independent nominal variable of treatment group (e.g. 

control versus treatment) and the dependent nominal variable of change in feeding behavior 

(e.g. positive change, negative change, or no change). To investigate associations between two 

nominal (and categorical) variables, the Goodman and Kruskal’s λ (or lambda) test is used. This 

test is a nonparametric approach to measure the strength of association between two variables. 
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Using this approach, the ordering of time is ignored and each time point is viewed independent. 

IBM SPSS Statistics software (Version 23 & 24, IBM North America, New York, NY) was used for 

all analyses. 

Benchmarks for Success of Specific Aim 1 

 GLAS Experiment 1: For this experiment two different quantitative techniques, von Frey 

fibers and a modified acetic-acid wiping test, will be evaluated in naïve axolotls to determine 

which method produces more consistent responses. Each technique (vF or AAT) will be evaluated 

with a different group of six animals. The animals’ response to noxious mechanical and chemical 

stimulation will be measured with an electronic vF aesthesiometer or different concentrations of 

acetic acid, respectively, to establish a baseline response. The quantitative method which 

produces the most repeatable results will determine which technique will be utilized in 

subsequent experiments. 

 GLAS Experiment 2: We will evaluate the effects of different doses of butorphanol and 

buprenorphine on quantitative and behavioral parameters (see Table 1). Six animals will be 

assigned to each analgesic group, buprenorphine or butorphanol (low [L], medium [M], or high 

[H] dosage). 

 GLAS Experiment 3: Three surgical groups of animals (6 per group, receiving either 

butorphanol, buprenorphine, no analgesic) will undergo mechanical induction of cardiac 

ischemia. Using data from Experiment 2, animals will receive optimized analgesic doses. The 

same evaluation criteria and schedule (behavioral and quantitative methods) that were used in 

Experiment 2 will be used in Experiment 3 however the 0-hour time point will be designated as 

the point of recovery from anesthesia. 
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 GLAS Experiment 4: Three surgical experimental groups (buprenorphine, butorphanol, 

and no analgesia) of naïve axolotls will undergo mechanical induction of cardiac ischemia using 

the same doses utilized in Experiment 3. Each experimental group will consist of 18 animals; 6 

will be humanely euthanized at each of three post-operative timepoints (12 hr, 2 days, 7 days). 

These timepoints were selected based upon observations from pilot studies we have performed 

examining cardiac histology in axolotls following mechanical ischemic injury. Following 

euthanasia, cardiac tissue will be collected for histologic processing and analysis. Quantitative 

and behavioral assessments will be performed as described in Table 1 for each group as allowed 

until the time of euthanasia. 

Potential Problems and Alternative Strategies for Specific Aim 1 

 GLAS Experiment 1: The current approach to elicit a nociceptive response in axolotls relies 

on stimulating the animal just lateral to the dorsal fin, in line with its forelimb. However, in the 

integumentary system of salamanders, in contrast to the cold/heat receptors and tactile 

receptors located in the epidermis, the pain and pressure receptors are situated in the dermis. 

Thus, the vF aesthesiometers may be stimulating tactile receptors and not pain receptors. 

Additionally, while several behaviors observed in newts may be useful in evaluating analgesic 

efficacy in that species, it is unclear whether these same behaviors will be useful in axolotls. Given 

the lack of any established pain related ethograms specific to axolotls, the published data in 

newts is the most promising starting point. 

 GLAS Experiment 2: Although a significant body of knowledge on pain control exists in 

newts and frogs, caution is advised when applying doses and schedules to axolotls that diverged 

from the closest common ancestor 145 and 260-million years ago, respectively. If no significant 
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differences are noted in somatic nociception, proceeding onto the next set of experiments is still 

warranted to determine if the drugs and doses tested provide antinociception to visceral pain. 

Also, with opioid receptor distributions that are predate the mammalian distribution patterns, 

common side effects of opioid use in mammals may arise in amphibians. 

 GLAS Experiment 3: Like Experiment 2, using drugs and doses from a distantly related 

cousin to the axolotl may not result in significant differences in antinociception compared to 

control animals. However, proceeding onto the next set of experiments is still warranted to 

determine if the drugs and doses tested affect tissue histopathology during healing and/or 

regeneration. 

 GLAS Experiment 4: The histopathology of healing and regenerating cardiac tissue after 

an ischemic injury is unknown. Histology staining optimization will be optimized by the third 

party. However, immunohistochemistry relies on compatible antibody binding. The best-

available muscle myosin and non-muscle myosin antibodies will be used, but their compatibility 

to axolotl tissue is not guaranteed. Optimization by the third party will proceed at their expertise. 

Potential Hazards of Specific Aim 1 

 Experiment 1: Undue pain and stress on the animals can result from the assessment of 

behavior from noxious stimuli. A stepwise approach from very mild to highly noxious will be used 

to elicit behavior, while closely monitoring animal welfare at each step throughout the 

experiments. 

 Experiment 2: Administration of one of the drugs requires injection. The injection site has 

been chosen to prevent damage to internal organs, while DLAR training of the users to handle 

injections in animals is a safeguard to safety of laboratory personnel. Additionally, injection of 
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animals under light sedation will increase safety to both animal and laboratory personnel during 

the procedure. 

 Experiment 3: Thoracotomies and survival surgeries are highly stressful to the animal and 

require surgeon skill to successfully complete. Multiple practice and pilot surgeries were 

performed to ensure constant sedation and animal welfare throughout the procedure. Constant 

monitoring of the animals while under a surgical plane of anesthesia is standard practice for all 

animal procedures. 

 Experiment 4: The euthanasia process proceeds with a stepwise approach from inducing 

anesthesia, performing primary euthanasia using a higher dose of anesthetic, followed by 

assurance of death using decapitation and pithing. Personnel safety is a potential hazard due to 

the use of scalpel and large-bore hypodermic needles. Multiple practice and pilot euthanasia 

attempts were successfully completed to ensure the welfare of the animal and establish 

competency of the process for laboratory personnel. 

Specific Aim 2 

Overview of Specific Aim 2 

 Determine the spatiotemporal progression of axolotl cardiac tissue histopathology over 

time after mechanically-induced ischemia-reperfusion injury. 

 After establishing the pre-, peri-, and post-operative procedures to induce a true ischemic 

injury in axolotls, monitoring gross functional recovery and the spatiotemporal development of 

histopathology in the damaged areas over time will enhance understanding of cardiomyocyte 

biology and lifecycle. 
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Rationale of Specific Aim 2 

 Urodele amphibians, which include axolotls, are the only vertebrates that have been 

shown to dedifferentiate their cells, recreating an “embryonic” environment from which they can 

regenerate injured body parts and internal organs. With the ability to “start over”, this process 

of repair and regeneration leads to the perfect replacement of the lost or injured tissue via 

cellular dedifferentiation, subsequent cellular proliferation, followed by re-differentiation into 

the appropriate cell phenotypes, a process termed epimorphic regeneration (Roy and Gatien, 

2008). Mammalian cells were shown to have the ability to dedifferentiate as well (Odelberg et 

al., 2000), but this was done under experimental conditions by the ectopic expression of the 

homeobox-containing transcriptional repressor msx1. msx1 has been identified in the 

regenerating urodele limb blastema and the limb of a developing mammalian mouse embryo 

(Odelberg et al., 2000). Thus, unlike mammals, urodeles can regulate the signaling mechanisms 

that mediate cellular dedifferentiation, proliferation, and re-differentiation, allowing them to 

maintain their lifelong ability to regenerate [see Figure 8, adapted from (Roy and Gatien, 2008)]. 

Unfortunately, there have not been any studies to test this ability in urodeles in the heart using 

a model of ischemic injury. Furthermore, newts and axolotls have shown mechanistic differences 

in how they regenerate skeletal muscle injuries (Sandoval-Guzman et al., 2014). Thus, since the 

newt (Notophthalmus viridescens) is a neotene, whereas the axolotl (Ambystoma mexicanum) is 

an obligate neotene (Duellman and Trueb, 1994), cardiac injury regeneration in the newt 
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(Oberpriller and Oberpriller, 1974) may follow different mechanisms and produce different 

results compared to the axolotl, especially when using a true ischemic injury. 

General Approach of Specific Aim 2 

Echocardiography 

 The first historical use of ultrasound to record moving images of the heart occurred on 

October 29, 1953 by Dr. Inge Edler and Dr. Hellmuth Hertz using the Siemens Ultrasound 

Reflectoscope (Singh and Goyal, 2007). Heralding the field of “ultrasound cardiography”, their 

findings of M-mode ultrasound images were eventually published in the proceedings of the Royal 

Physiological Society in Lund in 1954 (Edler and Hertz, 2004). M-mode, which uses only one 

ultrasonic beam, is rarely used by itself in modern equipment, being a supplement to 2D scans 

with multiple ultrasonic beams transmitted through wide arcs, or Doppler imaging that allows 

for the detection of blood flow direction and velocity. These modern applications of ultrasound 

 
Figure 8: The relationship between the regenerative capacity of various species and the age 
of the organism. 
Also shown are proposed molecules responsible for the regenerative capacity (or lack thereof) 
are shown. 
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waves, now referred to as echocardiography or cardiac ultrasound, provides a safe, non-invasive 

imaging modality that plays an essential role in the diagnosis and serial evaluation of cardiac 

pathologies (Lilly, 2011). 

Development of Non-Invasive, Functional Cardiac Imaging 

 Axolotls are anesthetized in small mouse poly using 0.1% tricaine methanesulfonate (MS-

222). Figure 9 shows the setup for conducting ultrasound scans. Scans are performed 

immediately after inducing a light plane of anesthesia and performed as quickly as possible to 

prevent a decrease in cardiac output due to prolonged anesthesia exposure. 

 Access to a Verasonics Vantage 128™ (www. http://verasonics.com/vantage-systems/) 

high-resolution research ultrasound system was kindly provided by Dr. Mohammadreza 

Nasiriavanaki of the WSU Biomedical Engineering (BME) department. Controlled through a 

MATLAB® (https://www.mathworks.com/) interface, script modification is required to fit 

individual applications. 

 
Figure 9: Setup for Ultrasound Scans 
After inducing anesthesia, axolotls can be held in place with rodent crocks or enrichment 
tunnels. 
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 MathWorks®, the makers of MATLAB®, offer add-on suites to the base installation of 

MATLAB® to give end-users additional options for specific applications. Since the MATLAB® script 

templates from Verasonics do not modify the receive (RCV) signal before recording results to 

audio-video interleave (.avi) files, image post-processing is required to analyze images recorded 

by the Vantage 128™ system. The Image Processing Toolbox suite provides additional capabilities 

to image processing workflows. After individually captured frames are extracted from audio-

video interleave files using the open-source software VirtualDub (Version 1.10.4, Build 35491: 

https://sourceforge.net/projects/virtualdub/), the images can be processed by MATLAB® using 

commands enabled by the Image Processing Toolbox suite. The pseudo code approach to image 

processing follows this simplified algorithm: 1) Convert image to grayscale color space, 2) 

enhance grayscale images, 3) manually define the region of interest (ROI), and 4) calculate the 

functional cardiac parameter of interest. Please refer to the section “MATLAB® Code for Image 

Post-Processing and Fractional Area Change Calculations” in APPENDIX A: PILOT STUDIES AND 

SUPPLEMENTARY INFORMATION for details on the development of the image post-processing 

script used to determine cardiac fractional area change (FAC) for the axolotls presented in 

CHAPTER 6: RESULTS. 

Time Course for Follow-Up 

 Review of cardiac regeneration studies in zebrafish provide range of expected timescales 

for regeneration of different cardiac injuries. After cardiac resections with the removal of up to 

20% of the ventricular apex, full regeneration has been shown after 2 months due to local 

cardiomyocyte proliferation. Following a cardiac injury from cryoablation, freeze damage of 

around 25% of the ventricle can be completely remodeled after 4 months with local 

https://sourceforge.net/projects/virtualdub/
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cardiomyocyte proliferation replacing collagen from the lesion that forms. After conditional 

genetic ablation of up to 60% of both atrial and ventricular cardiomyocytes, the zebrafish heart 

rapidly remodels within 1 month after injury from robust global cardiomyocyte proliferation 

(Choi and Poss, 2012). Given these time estimates of regeneration in the zebrafish, and without 

any guidance in how a true ischemic cardia injury in the axolotl will remodel, 1-, 2-, 3-, and up to 

4-month follow-up time points for collecting heart specimens with regular (e.g. weekly or bi-

weekly) echocardiograms to monitor functional recovery will be the approach in this study. 

Animals 

 Adult, male and female, wild-type axolotls at -7 years of age were gifted from the Dr. 

James Thomson laboratory (through Dr. Jeff Nelson, Regenerative Biology Laboratory, Morgridge 

Institute for Research). The animals were individually housed in plastic, static rodent cages 

without the use of the cage top – animals are identified by marking on their individual cage cards. 

For environmental enrichment purposes, a single rodent tunnel is placed in the cage; enough 

50% Holtfreter’s solution(Armstrong and Malacinski, 1989; Hamburger, 1942) is added to cover 

the rodent tunnel to allow the axolotls free ability to swim into and hide in the tunnel. Following 

pilot studies and GLAS Grant experiments, animals were kept in 50% Holtfreter’s solution made 

from tap water treated using Kordon® water conditioner NovAqua® Plus™ and ammonia 

detoxifier AmQuel® Plus™ (Kordon LLC; Hayward, CA). After ectoparasites like Ichthyobodo 

necator, Chilodonella uncinate, and various species from the genus Trichodina were found from 

skin scrapings on multiple animals, deionized water from the research building’s water 

processing plant (particulate filtration, reverse osmosis, UV treatment, and deionization) was 

used as the water source for 50% Holtfreter’s solution. The change in water source occurred 
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before any surgeries were performed. The 50% Holtfreter’s solution is made by mixing the 

appropriate amounts of salts (1.75 g NaCl, 0.050 g CaCl2, 0.025 g KCl, and 0.100 g NaHCO3 to each 

liter of treated tap water) in a clean, uncovered container (e.g. 44-gallon commercial trash can) 

with the building’s deionized water. The 55-gallon drum mixer was cleaned with Contec™ Accel 

TB™ Ready-to-Use Disinfectant (active ingredient: 0.5% hydrogen peroxide) before inserting into 

the deionized water before mixing. Before using, the quality of each batch of 50% Holtfreter’s 

solution is checked using EasyStrips™ 6-in-1 Aquarium Test Strips and Ammonia Test Strips (Tetra; 

Blacksburg, VA). Additionally, biological activity was checked with a Charm Sciences, Inc 

(Lawrence, MA) novaLUM luminometer which detects ATP residue from microorganisms. Test 

batches of 50% Holtfreter’s solution made with clean containers, 55-gallon mixer, and deionized 

water showed no biologic activity for 72-hours after mixing. From this point onwards, all 

prepared 50% Holtfreter’s solution was used within 72-hours or tested with the novaLUM to 

ensure zero biological activity. 

 The animals were housed in a windowless room to prevent exposure to natural light that 

facilitates algae growth, instead using a 12:12-h artificial light:dark cycle (using standard 

fluorescent lighting) with an ambient temperature between 15-19°C (~59-66°F). While observing 

feeding behaviors before surgeries, animals were fed ad libitum a diet of sinking Soft-Moist 

Salmon Diet (Rangen; Buhl, ID) three days a week (Monday, Wednesday, and Friday). However, 

after two animals became anorexic and were euthanized after two-weeks of inappetence, livers 

were tested and found positive for hypovitaminosis A. Animals were switched to a new diet, 

Amphibian & Carnivorous Reptile Gel (Mazuri, PMI Nutrition International LLC, Saint Louis, MO) 

on an every-other-day schedule. Animals are allowed up to 2 hours to feed as adult axolotls 
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exhibit low levels of activity when left undisturbed. If animals did not quickly acclimate to the 

new food source, the original Rangen Soft-Moist Salmon Diet was added to the cage. Immediately 

after feeding, animals are transferred to new plastic rodent cages; tunnels are rinsed and 

replaced weekly. All axolotls are checked daily for overall health, inspecting the condition of gills 

and dorsal fin for signs of stress, along with observing for the presence of feces to ensure 

appropriate GI function. All animals are acclimated to laboratory conditions for 5 days before 

performing any experimental procedures. 

 Since the axolotls from the University of Wisconsin showed some abnormal clinical 

behavior, female, adult, breeding and non-breeding wild-type axolotls (>60g) were purchased 

from the Ambystoma Genetic Stock Center (University of Kentucky; Louisville, KY). The animals 

were individually housed using the new method of Holtfreter’s solution preparation and storage 

and were fed ad libitum the new diet, Amphibian & Carnivorous Reptile Gel (Mazuri, PMI 

Nutrition International LLC, Saint Louis, MO) on an every-other-day schedule. Animals were 

allowed up to 2 hours to feed as adult axolotls exhibit low levels of activity when left undisturbed. 

If animals did not quickly acclimate to the new food source, the original Rangen Soft-Moist 

Salmon Diet was added to the cage since the animals from the University of Kentucky were raised 

on this food source. 

Experiment 1 – Development of Non-Invasive, Functional Cardiac Imaging 

 A 2017 publication studying cardiac cryoablation in axolotls used echocardiography to 

monitor cardiac morphology and function at various stages after cryoablation (Godwin et al., 

2017a). The researchers in that study used a Vevo 2100 Imaging System (FUJIFILM/VisualSonics 

Inc., Canada), a commercial ultrasound solution for small animal imaging, with hardware and 
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software designed, assembled, and programmed for quick setup and ease of use by researchers. 

Without access to the same equipment and with the desire to look at raw ultrasound data from 

each channel, a collaborator at the home institution provided access and use of a research and 

development, high-frequency ultrasound machine, the Verasonics (Kirkland, WA) Vantage 128™. 

This development-only platform is run on proprietary Verasonics hardware with a user interface 

controlled by MATLAB® (MathWorks, Natick, MA). 

 Pilot scans were conducted with anesthetized animals in various configurations using 

ultrasound gel with animals out of the water, and directly on the skin while animals were 

submerged in anesthesia. Best results were found with direct application of the transducer to the 

submerged animal, and the transducer position was optimized to capture longitudinal ventricular 

cross sections. To enable consistency in capturing images, landmarks were found that applied to 

all animals. Underlying the dorsal surface of the heart is a mesocardial ligament (Francis, 1934) 

which anchors the heart to the dorsal surface of the pericardium. This provides a hyperechoic 

feature that allows for positioning the transducer. Furthermore, the transducer was rotated to 

capture the atrioventricular valves in the scan. Using these two landmarks help provide a 

repeatable approach to visualizing the axolotl heart. 

 After repeatable pilot scans of raw ultrasound data are captured, post-processing in 

MATLAB® is necessary to reduce noise and enhance features in the image. The MATLAB® 

software suite has robust image processing features and these are used to enhance images and 

to perform Fractional Area Change calculations (FAC). FAC should not be confused with ejection 

fraction (EF). When using ultrasound images, EF can be calculated by single-plane captures and 

tracing the appropriate images and applying the area-length method or modifications of 
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Simpson’s rule (Quinones et al., 1981). These approaches extrapolate volumes based on well-

defined ventricular chamber shape dictated by the compact myocardium in mammalian hearts, 

but can be improved using equations that incorporate velocity-time profiles of the outflow tract 

(Dumesnil et al., 1995). The trabeculated structure of the axolotl heart results in a poorly-defined 

ventricular chamber – thus, FAC is a way to estimate global ventricular function in amphibian 

hearts. The outer ventricular shape will be used to calculate FAC. Please see APPENDIX A: PILOT 

STUDIES AND SUPPLEMENTARY INFORMATION section for the details on the development of the 

post-processing algorithm and procedure to calculate FAC. 

Experiment 2 – Long-Term Follow-up of Axolotl Hearts Following Ischemic Injury 

 Four surgical groups of animals (4-6 animals per group, for each endpoint for heart 

sampling) will undergo mechanical induction of cardiac ischemia. Using data from Aim 1, animals 

will receive optimized analgesic doses for 48-72 hours to provide for animal welfare and comfort. 

Please see APPENDIX B: IACUC & DLAR DOCUMENTATION – ANIMAL PROCEDURES for specific 

details on performing the surgeries. 

Benchmarks for Success of Specific Aim 2 

 Experiment 1: After developing the algorithm to calculate FAC, comparison to the control 

values in the 2017 publication (Godwin et al., 2017a) will provide confidence to use approach 

developed by this laboratory. 

 Experiment 2: Induction of ischemia in the axolotls and survival until heart harvesting will 

be the endpoint for success in this experiment. 
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Potential Problems and Alternative Strategies for Specific Aim 2 

 Experiment 1: If the algorithm development cannot be achieved, other commercial, 

clinical ultrasounds that are ready for end-user applications are available at the home institution. 

A freely-accessible unit is a low-frequency, low-resolution unit, while a Vevo 2100 system is 

available from an imaging core at standard institutional-use fees. The Vevo 2100 system cannot 

be easily moved, making imaging the axolotls difficult, whereas the Verasonics Vantage 128™ is 

easily transportable and set up in the animal vivarium. 

 Experiment 2: Thoracotomies and survival surgeries are highly stressful to the animal and 

require surgeon skill to successfully complete. Multiple practice and pilot surgeries were 

performed to ensure constant sedation and animal welfare throughout the procedure. Constant 

monitoring of the animals while under a surgical plane of anesthesia is standard practice for all 

animal procedures. Multiple pilot survival surgeries have been performed to date with very few 

losses due to procedural errors during surgery (>95% survival rate to date). No potential 

problems are expected. 

Potential Hazards of Specific Aim 2 

 Experiment 1: Imaging animals under light anesthesia does not pose any hazards. 

 Experiment 2: Multiple practice and pilot surgeries were performed to ensure surgeon 

skill with sharp instruments and familiarity with immersion anesthesia. Protective personal 

equipment requirements are outlined in approved protocols. Processes have been put in place 

and training has been provided to mitigate potential hazards. 
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CHAPTER 6: RESULTS 

Specific Aim 1 

Mechanically-Induced Ischemia 

Mouse Pilot Studies 

 Using an appropriate microvascular clamp and carefully compressing only about 10-15% 

of the apical portion of the heart, attempts to mechanically-induce ischemia in the mouse were 

successfully completed without having to use antiarrhythmic drugs (e.g. dobutamine or 

dopamine) or emergency procedures (e.g. cardiac massage) to ensure animal survival. After 7 

A)  B)  

C)  D)  
Figure 10: Histology of Mouse Hearts from Pilot Clamping Stides 
Sections all stained with Gomori’s Trichrome. A) and B) are hearts from naïve pilot animals. C) 
and D) are different sections from one animal that underwent mechanical induction of 
ischemia and shows evidence of ischemia-reperfusion injury. Inset pictures in the bottom row 
show additional details of thinned ventricular wall. 
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days, one animal was euthanized, the heart processed for histologic study, and stained with 

Masson’s trichrome stain. As seen in Figure 10, the ventricular wall of the injured area shows 

evidence of thinning and slight chamber dilation, expected findings after a traditional myocardial 

infarction (Robbins et al., 2010). 

Mechanically-Induced Ischemia: Axolotl Pilot Studies 

 After successful pilot results in mice, the same microvascular clamp and technique was 

used in axolotls. With no prior data on the time required to induce ischemia-reperfusion injuries, 

the appropriate time for ensuring ischemia-reperfusion injury was determined first by 

performing the mechanically-induced ischemic injury for 20 minutes and inspecting the histology 

of the injury site for signs of apoptosis and/or necrosis. Without any guidance on myocardial 

infarctions in salamanders, the 20-minute length of time was chosen as a starting point based on 

the clinical definition of human myocardial infarction (Robbins et al., 2010); 20 minutes of 

ischemia is the length of time needed for irreversible myocardial cell damage and cell death. A 

naïve heart from a group of pilot animals used to determine the required clamping-time for 

ischemia-reperfusion injuries in the axolotl is shown in Figure 11. This figure shows trabeculated 

cardiomyocytes with intact nuclei. After a 20-minute ischemic event, macroscopically, the 

clamped cardiac tissue resumed normal cardiac activity (contraction in time with surrounding 

myocardium) and microscopically, no signs of apoptosis or necrosis (e.g. pyknosis, karyolysis, or 

karyorrhexis) were evident after Masson’s trichrome histology staining. 
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 Histology of various hearts subject to 20 minutes of ischemia and sacrificed 1-day, 2-days, 

7-days, and 30-days status-post surgery are shown in Figure 12. Although some of the sections 

are slightly over stained, there is visual evidence A 30-minute ischemia-induction procedure was 

performed with results to Figure 12. Consequently, additional pilot surgeries were performed 

and the time for mechanically-induced ischemia was increased by increments of 15-30 minutes 

until there was macroscopic evidence of akinetic cardiac muscle after clamp removal. Consistent, 

clear physical and histological signs of apoptosis and necrosis were first determined after 120 

minutes of mechanically-induced ischemia as shown in Figure 13. 

A)  

B)  C)  
Figure 11: Heart of Naïve Animal for Clamping-Time Pilot Testing 
A) Gross view of an axolotl heart from a naïve animal. Gomori trichrome sections of a naïve 
heart at B) 10X zoom view and C) 40X zoom view showing greater detail of the apex of the 
same heart. Normal cardiomyocytes and their nuclei (black arrows) are shown with flattened 
endothelial cells (red arrows) on the border of trabeculated tissue. Scale bars not shown. 
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 After determining the appropriate amount of time to induce ischemia-reperfusion injuries 

and refining heart harvesting procedures during the pilot phase of this project, a naïve heart from 

the animals used in the GLAS Grant studies, illustrated in Figure 14, shows the expected 

trabeculated myocardium. Evident are endocardium (cardiac endothelium), cardiomyocytes, and 

epicardium. Sinus cavities between bands of myocardium allow blood to perfuse the beating 

heart. Few red blood cells are evident as hearts were flushed with heparin (100 units/mL) flush 

solution and amphibian saline before fixation. 

A)  B)  

C)  D)  
Figure 12: Pilot Hearts After 20 Minutes of Ischemia 
Gomori’s trichrome used to stain tissue. Pictures denote different days after surgery that 
induced ischemia-reperfusion injury. A) Status-post 1 day. Tissue was slightly overstained. B) 
Status-post 2 days. C) Status-post 7-days. D) Status-post 30-days. Note that after 20-minutes 
of ischemia, normal cardiomyocytes and their nuclei (black arrows) and flattened endothelial 
cells (red arrows) on the border of trabeculated tissue are still present like naïve tissue. Scale 
bars not shown. 
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A)            B)  

C)            D)  

E)            F)  
Figure 13: Pilot Hearts After 120 Minutes of Ischemia 
A) Gross view of heart after 120 minutes of ischemia. After flushing the heart, the clamped 
area is clearly demarcated with a zone of hemorrhage (green arrow). B) 10X zoom view of a 
section containing the border and ischemic regions. C) 40X zoom view of ischemic region 
showing areas of hemorrhage (green arrow) full of RBCs (single RBC at blue arrow). The 
cardiomyocytes show different states of apoptosis such as karyorrhexis (orange arrows) and 
pyknosis (purple arrows). D) 60X zoom view of the border region showing normal 
cardiomyocytes (black arrows) with flattened endothelial cells (red arrows) on the border of 
trabeculated tissue. E) and F) 60X zoom view of the ischemic region showing cardiomyocytes 
in different states of apoptosis such as karyorrhexis, pyknosis, and karyolysis (white arrows). 
There is also evidence of necrotic cardiomyocytes with a hypereosinophilic cytoplasm (pink 
arrows). 
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 To confirm that one-hundred twenty minutes of mechanically-induced ischemia and the 

return of blood flow results in ischemia-reperfusion, the procedure was performed on newly-

acquired animas for works outlined under the GLAS Grant. After removing the clamp, the heart 

muscle was indeed akinetic. Hearts harvested from euthanized animals 12 hours (Figure 15) and 

7 days (Figure 16) following the surgical procedure show a clearly demarcated area where the 

A)  B)  C)  

D)  
Figure 14: Heart from a Naïve Axolotl 
A) Gross view of an axolotl heart from a naïve animal in the GLAS Grant group of experiments. 
B) H&E sections of a naïve heart at 2X zoom view and C) 4X zoom view showing greater detail 
of the apex of the same heart. D) Normal cardiomyocytes and their nuclei (black arrows) are 
shown with flattened endothelial cells (red arrows) on the border of trabeculated tissue. Scale 
bars show length scale at each zoom level. 
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clamp was placed. Following rinsing with heparin flush and amphibian saline, hemorrhaging into 

the injury site is clear. As expected following an ischemia reperfusion injury, histologic sections 

show the injured area contains inflammatory infiltrate and cytological evidence of hemorrhaging. 

 Acute (12 hours after injury, Figure 17) and chronic (7 days after injury, Figure 18) changes 

after mechanically-induced ischemia-reperfusion injury confirm mechanically-inducing ischemia 

for one-hundred twenty minutes results in gross tissue injury (hemorrhaging) and akinetic or 

dyskinetic muscle contraction of the injured area upon clamp removal. Microscopic evidence of 

ischemia-reperfusion injury includes the presence of necrotic cardiomyocytes, activation of 

endocardium, and infiltration of inflammatory cells (leukocytes). Cardiomyocyte nuclei that show 

evidence of pyknosis, karyorrhexis, and karyolysis in the bands of myocardium are evidence of 

apoptosis. Activated endocardium appear as swollen, “plump” endothelial cells that line 

trabeculated regions within the parenchyma of the heart. Lymphocytes and heterophils are the 

most common leukocytes in the injured region. Heterophils have a segmented nucleus and 

colorless cytoplasm that contain rod-shaped granules that are typically eosinophilic. Heterophils 

are highly phagocytic and play a role in clearing pathogens and cellular debris at sites of 

inflammation (Claver and Quaglia, 2009). Additional details of histologic features of H&E stains is 

found in the results section of GLAS Experiment 4: Evaluate Histologic Differences in Healing: 

Control & Analgesia. 
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A)  B)  C)  

Figure 15: Heart from an Axolotl 12 Hours Post Injury 
A) Gross view of an axolotl heart 12 hours post mechanical induction of ischemia-reperfusion 
injury. Hemorrhaging at the site of clamp application is evident after heart is rinsed with 
heparin lock solution and amphibian saline. H&E sections of injured heart at B) 2X zoom view 
and C) 4x zoom view showing greater detail of the apex of the same heart. Ischemia-
reperfusion injury is evident in the sections, showing significant hemorrhage and loss of 
cardiomyocytes at the apex. Scale bars show length scale at each zoom level. 

A)  B)  C)  

Figure 16: Heart from an Axolotl 7 Days Post Injury 
A) Gross view of an axolotl heart 7 days post mechanical induction of ischemia-reperfusion 
injury. Hemorrhaging at the site of clamp application is evident after heart is rinsed with 
heparin lock solution and amphibian saline. H&E sections of injured heart at B) 2X zoom view 
and C) 4x zoom view showing greater detail of the apex of the same heart. Ischemia-
reperfusion injury is evident in the sections, showing significant hemorrhage and loss of 
cardiomyocytes at the apex. Scale bars show length scale at each zoom level. 
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A)  

B)  

Figure 17: Histology of Injured Axolotl Heart 12 Hours After Injury. 
A) 20X zoom view of an injured area of the heart. Activated endocardium (black arrows) line 
a trabeculated area while hemorrhage into the myocardial band is present (green arrow). 
Proteinaceous material (blue asterisk) from edematous or exudative fluid is also found within 
the myocardial bands. B) 40X zoom view of an injured area of the heart. Necrotic 
cardiomyocytes (black arrows) with hypereosinophilic cytoplasm are present. Lymphocyte 
aggregates (light blue arrows) and heterophils (green arrows) infiltrate the damaged 
myocardium. 

*
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GLAS Experiment 1: Validate Quantitative Methods to Evaluate Nociception in Naïve Animals 

 The National Institute of Standards and Technology (NIST) define repeatability as 

“closeness of the agreement between the results of successive measurements of the same 

measurand carried out under the same conditions of measurement”(Taylor and Kuyatt, 1994). 

Serial trials were performed using mechanical and chemical noxious stimuli. The data for the von 

Frey evaluators are found in Table 2 while the data for the acetic acid test are found in Table 3. 

Simple descriptive statistics are tabulated – the standard deviation of variations from the mean 

is used to quickly judge the repeatability of the testing method. For assessing the reliability of the 

 
Figure 18: Histology of Injured Axolotl Heart 7 Days After Injury 
(Top) 40X zoom view of a remote region of the heart away from the site of injury. 
Cardiomyocytes (black arrows) are normal and endocardium are flat (red arrows). A lone RBC 
is shown (blue arrow) outside of the bands of myocardium. (Bottom) 40X zoom view of an 
injured area of the heart. Necrotic cardiomyocytes (black arrows) with hypereosinophilic 
cytoplasm are present. The endocardium (red arrows) are activated, as noted by their “plump” 
appearance. Lymphocytes (light blue arrows) and red blood cells are evident within bands of 
myocardium. 
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test, the intraclass correlation coefficient (ICC) is an appropriate test to determine test-retest 

reliability. 

Table 2: Repeatability of Responses to Serial Testing Using von Frey Evaluators 

Axolotl ID 17 18 19 20 21 22 

vF Evaluator Code 

Trial 1 6 7 7 7 9 4 

Trial 2 5 9 9 3 6 6 

Trial 3 8 8 8 5 7 12 

Mean Response 6.3 8.0 8.0 5.0 7.3 7.3 

Individual Variations 

0.3 1.0 1.0 2.0 1.7 3.3 

1.3 1.0 1.0 2.0 1.3 1.3 

1.7 0.0 0.0 0.0 0.3 4.7 

Mean of Individual Variation 1.1 0.7 0.7 1.3 1.1 3.1 

SD of Individual Variation 0.69 0.58 0.58 1.15 0.69 1.68 

 
Table 3: Repeatability of Responses to Serial Testing Using Acetic Acid 

Axolotl ID 17 18 19 20 21 22 

Acetic Acid Vial Code 

Trial 1 6 4 6 6 7 5 

Trial 2 5 5 6 5 5 5 

Trial 3 6 5 5 6 5 5 

Mean Response 5.7 4.7 5.7 5.7 5.7 5.0 

Individual Variations 

0.3 0.7 0.3 0.3 1.3 0.0 

0.7 0.3 0.3 0.7 0.7 0.0 

0.3 0.3 0.7 0.3 0.7 0.0 

Mean of Individual Variation 0.4 0.4 0.4 0.4 0.9 0.0 

SD of Individual Variation 0.19 0.19 0.19 0.19 0.38 0.00 

 Using SPSS, the intraclass correlation coefficient for the von Frey evaluators is ρ = -0.050 

(95% confidence interval: -0.351 – 0.605), with an ANOVA assessment of F(5,12) = 0.857 (p = 

0.536) suggesting there are no outlier animals. A negative value here for the intraclass correlation 

coefficient reflects a negative average covariance among the measurements. Using the same 

animal subjects, the acetic acid test shows an intraclass correlation coefficient of ρ = 0.098 (95% 
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confidence interval: -0.282 – 0.718), with an ANOVA assessment of F(5,12) = 1.325 (p = 0.318) 

suggesting there are no outlier animals. Given the upper bound of the 95% confidence interval, 

the acetic acid test shows a greater reliability than the von Frey evaluators. 

 In Table 2, the intraclass correlation coefficient results are illustrated using descriptive 

statistics. The nociception threshold using von Frey evaluators has much more variability 

between measurements. Although care is taken such that the flexible fiber is placed 

perpendicular to the site of evaluation before the force is applied, the shape of the animal 

(curved body lateral to dorsal fin) and the presence of its natural mucous coating sometimes 

makes it difficult to consistently apply the evaluator perpendicular animal’s skin. Conversely, 

using a pipette, a small-caliber pipette tip, and a very small volume of acetic acid allows for the 

more precise application of this noxious stimulus. 

 As shown in Table 3, using the same axolotls from the von Frey evaluator assessment, the 

individual variation of the acetic acid test is smaller. From these simple descriptive statistics and 

the difficulty in consistently performing the measurements on axolotls, moving forward, the 

acetic acid test was used for all quantitative tests. A reproducibility [“closeness of the agreement 

between the results of measurements of the same measurand carried out under changed 

conditions of measurement”(Taylor and Kuyatt, 1994)] of the acetic acid test was performed in a 

different set of six axolotls. The intraclass correlation coefficient for this repeated test is ρ = -

0.117 (95% confidence interval: -0.379 – 0.537) with an ANOVA assessment of F(5,12) = 0.686 (p 

= 0.643) suggesting there are no outlier animals. The descriptive statistics are shown in Table 4. 

When assessing all acetic acid tests across twelve different animals, the intraclass correlation 
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coefficient is ρ = -0.021 (95% confidence interval: -0.270 – 0.397) with an ANOVA assessment of 

F(11,24) = 0.938 (p = 0.523) suggesting there are no outlier animals. 

Table 4: Reproducibility of Responses to Serial Testing Using Acetic Acid 

Axolotl ID 23 24 25 26 27 28 

Acetic Acid Vial Code 

Trial 1 7 7 6 5 7 5 

Trial 2 6 6 5 6 6 6 

Trial 3 6 5 5 5 4 5 

Mean Response 6.3 6.0 5.3 5.3 5.7 5.3 

Individual Variations 

0.7 1.0 0.7 0.3 1.3 0.3 

0.3 0.0 0.3 0.7 0.3 0.7 

0.3 1.0 0.3 0.3 1.7 0.3 

Mean of Individual Variation 0.4 0.7 0.4 0.4 1.1 0.4 

SD of Individual Variation 0.19 0.58 0.19 0.19 0.69 0.19 

Although the variation is larger than the first series of serial acetic acid tests, it is still less than 

the variation of the von Frey evaluators. Furthermore, not only is testing more consistent with 

the acetic acid test (higher value of ρ using the 95% confidence interval when assessing the same 

set of animals between von Frey evaluators and acetic acid test), performing the acetic acid test 

is more easily accomplished by the operator or investigator. 

Conclusion: For quantitative assessment of pain, AAT was found to be more consistent versus vF. 

Study deviations: None. 

Unanticipated findings: None. 

Troubleshooting: None. 

Future directions: Evaluate additional quantitative tools to measure analgesia response, such as 

thermal nociception. 
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GLAS Experiment 2: Determine Optimized Analgesia 

 The significance of treatment effects at each time point are assessed by Kruskal-Wallis 

one-way analysis of variance for unrelated samples. Quantitative tests were analyzed for the 

change in nociceptive threshold from baseline (Δ NT in graphs). Findings from qualitative testing 

are included to see if analgesics change behavior – they are not indicative of analgesia efficacy. 

 All plots of quantitative and qualitative results for this experiment are shown in Figure 19. 

In quantitative testing (Left Panel, Figure 19B), no significant difference exists between mid-dose 

 

 
Figure 19: Results of Qualitative and Quantitative Testing in GLAS Experiment 2 
A) Results of Experiment 2A (Top) and Experiment 2B (Bottom) qualitative testing. 
B) Results of Experiment 2A (Left) and Experiment 2B (Right) quantitative testing. 
Legend:     Control;     Butorphanol;     Buprenorphine 

Significance: A) Top Row:  p < 0.025,  p < 0.005; Bottom Row:  p < 0.05,  p < 0.025. 
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butorphanol or mid-dose buprenorphine compared to control. Evaluating the other behavioral 

tests in Experiment 2A no clear trend stands out between analgesic or time for either study drug. 

 An adverse effect was observed in two of six animals in the mid-dose buprenorphine 

group. Fecal output ceased after the completion of the first round of experiments, meeting 

criterion for euthanasia. Necropsy of the two affected animals demonstrated dark discoloration 

of the GI tract tissue (see Figure 20) near the site of injection with significant colon distension 

and fecal impaction. Although TUNEL staining is strong near the rectum, suggesting greater DNA 

damage, H&E results do not indicate any pathophysiology in this area. However, the TUNEL 

staining results could be due to increased GI epithelial turnover. The only clear clinical conclusion 

is that the fecal output was reduced. This finding could be caused by primary effect of opioids 

causing reduced GI motility or a local reaction to the IP injection of this buprenorphine 

formulation and concentration. Based on these findings, it was decided to eliminate 

buprenorphine from further use in this study and try another round of Experiment 2 tests 

(Experiment 2B) comparing high-dose butorphanol (0.75 mg/L) to control. 

 Qualitative and quantitative tests were repeated in Experiment 2B after waiting at least 

one-week to allow any study drugs to completely wash out of the animals’ systems. In qualitative 

 
Figure 20: Adverse Effects Following Buprenorphine Injection 
A) Gross necropsy findings B) TUNEL staining of affected and C) unaffected GI tract. 

A)

B)

C)
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testing (Right Panel, Figure 19B), no significant difference exists between high-dose butorphanol 

to control. Evaluating the other behavioral tests in Experiment 2B, no clear trend stands out with 

high-dose butorphanol over time. 

Conclusion: Although no significant qualitative or quantitative trend is detected for controlling 

nociceptive, somatic pain when using the indicated treatments and doses in Experiment 2, the 

study continued using mid-dose and high-dose butorphanol. 

Study deviations: 

Although data on animal movement were recorded with pre-existing monitoring hardware from 

the institution’s Division of Laboratory Animal Resources, video analysis software was not 

available and the data could not be analyzed for quantitative trends. 

Unanticipated findings: Intracoelomic injections of mid-dose buprenorphine led to adverse 

effects related to reduced GI motility. Buprenorphine was dropped from further study. 

Troubleshooting: None. 

Future directions: Evaluate additional doses of butorphanol and different analgesic compounds. 

Evaluate animal movement data if software can be obtained. 
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GLAS Experiment 3: Evaluate Optimal Analgesic Dose in a Surgical Model in Axolotls 

 The drugs and doses from the conclusion of Experiment 2 were used in Experiment 3 to 

test whether there would be measurable control of surgical (visceral) pain. All test outcomes are 

found in Figure 21. No statistical difference was measured in the quantitative tests, suggesting 

no significant analgesic effect with the drugs and doses tested. 

Conclusion: No significant qualitative or quantitative trend is detected for controlling nociceptive, 

visceral pain when using the indicated treatments and doses in Experiment 3. 

Study deviations: The time to recover from anesthesia after surgery varies, but all drugs are 

administered at the same time. For statistical comparisons, administration of study drug is used 

as 0-hour time point instead of time of anesthesia recovery.  

 
Figure 21: Results of Qualitative & Quantitative Testing in GLAS Experiment 3 
A) Results of qualitative and B) quantitative testing. 
Legend:     Control; Butorphanol (    Mid) and (    High) 

Significance:  p < 0.025,  p < 0.005. 



www.manaraa.com

109 

 

Unanticipated findings: None. 

Troubleshooting: None. 

Future directions: Dose-escalation experiments are warranted to find the appropriate dose of 

butorphanol to provide pain relief. Evaluation of additional analgesics is warranted. 

GLAS Experiment 4: Evaluate Histologic Differences in Healing: Control & Analgesia 

 After inducing mechanical ischemia, axolotls were euthanized at three different 

timepoints, hearts were flushed with heparin lock flush and then fixed in 4% formaldehyde/zinc. 

Fixed hearts were processed for staining (H&E, Masson’s Trichrome, and picrosirius red; later 

acid fuchsin orange G) and immunohistochemistry (cardiac muscle myosin [Abcam AB50967], 

non-muscle myosin IIB [Abcam AB684], TUNEL, and BrdU) by Histowiz, Inc. (Brooklyn, NY), and 

pathology evaluated by Dr. Barry H. Rickman (VMD, PhD, DACVP, Sound VetPath, Edmonds, WA). 

Surgical Outcomes 

 In total, fifty-eight operations (n = 58) were performed with one animal used as a naïve 

heart sample. Although experiments were design to have six groups per control and treatment 

group (medium- and high-dose butorphanol), due to surgical complications, there were twenty 

(n = 20) axolotls in the group euthanized twelve hours after ischemia-reperfusion injury and 

nineteen (n = 19) axolotls in the group euthanized forty-eight hours after ischemia-reperfusion 

injury. In the twelve-hour group, the left atrium was clamped instead of the ventricular apex and 

the vena cava posterior (i.e. inferior vena cava in humans) was nicked on one animal leading to 

profuse bleeding. In the forty-eight-hour group, the left atrium was accidentally damaged when 

opening the pericardial sac, leading to gross hemorrhage. Animals with surgical complications 

were removed from study. 
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Qualitative Assessments of Pathology 

Simple Stains 

Hematoxylin/Eosin Stain 

 Results of Mayer’s hematoxylin/eosin (H&E) stains of a naïve axolotl heart are shown in 

Figure 14. Representative results of H&E staining in the ischemic region of damaged hearts are 

shown in Figure 22, Figure 23, and Figure 24 for animals sacrificed twelve hours (one-half day), 

A)      

B)      

C)      
Figure 22: H&E Stains of Control and Treatment Groups 12 Hours After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Histology features: Hemorrhage (green arrows); karyorrhexis (orange arrows), 
pyknosis (purple arrows), karyolysis (red arrows) necrosis (pink arrows), heterophils (blue 
arrows). Not all views contain an instance of each histologic feature, each histologic feature 
not annotated. Scale bar included. 
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two days, and seven days after ischemia-reperfusion injury respectively. Evidence of microscopic 

ischemia-reperfusion injury such as necrotic and apoptotic cardiomyocytes, activation of 

endocardium, and infiltration of inflammatory cells (leukocytes) is present. Qualitatively, there is 

no characteristic pattern of staining neither between control or treatment groups nor temporally 

from twelve hours to seven days status-post injury. 

 

A)      

B)      

C)      
Figure 23: H&E Stains of Control and Treatment Groups 2 Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Histology features: Hemorrhage (green arrows); karyorrhexis (orange arrows), 
pyknosis (purple arrows), karyolysis (red arrows) necrosis (pink arrows), heterophils (blue 
arrows). Not all views contain an instance of each histologic feature, each histologic feature 
not annotated. Scale bar included. 
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 First annotated in Figure 17A, there is evidence across control and treatment groups of 

eosinophilic (pink) edema or exudate in various tissue spaces of the injured myocardium. Eosin 

compounds are negatively-charged molecules and act as acidic dyes, staining basic (or 

acidophilic) structures red or pink. Eosin nonspecifically stains proteins, so in typical tissue, nuclei 

are stained blue by hematoxylin (by an incompletely understood reaction) while cytoplasm and 

extracellular matrix (ECM) have varying degrees of pink staining based on the type and 

A)      

B)      

C)      
Figure 24: H&E Stains of Control and Treatment Groups 7 Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Histology features: Hemorrhage (green arrows); karyorrhexis (orange arrows), 
pyknosis (purple arrows), karyolysis (red arrows) necrosis (pink arrows), heterophils (blue 
arrows). Not all views contain an instance of each histologic feature, each histologic feature 
not annotated. Scale bar included. 
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concentration of protein present (Fischer et al., 2008). Alternatively, the proteinaceous material 

may simply be components of the ECM that have been degraded by proteases present during the 

inflammatory cascade (Robbins et al., 2010).Thus, the only conclusion from H&E stains is that the 

edema or exudate is proteinaceous. Other stains are necessary to differentiate protein types. 

Masson’s Trichrome Stain 

 After confirming cardiac damage using H&E staining, additional simple stains were used 

to provide more details on the proteins present in axolotl histopathology following ischemia-

reperfusion injury. Results of Masson’s trichrome stains of a naïve axolotl heart are shown in 

Figure 25. Representative results from Masson’s trichrome staining in the ischemic region of 

A)  

B)  
Figure 25: Masson's Trichrome Stains of Naïve Axolotl Heart 
Views of naïve axolotl heart at A) 20X zoom and B) 40X zoom. Scale bar included. 
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damaged hearts are shown in Figure 26, Figure 27, and Figure 28 for animals sacrificed twelve 

hours, two days, and seven days after ischemia-reperfusion injury respectively. 

 Like all trichrome methods, Masson’s trichrome protocol extends the ability of the 

standard two-stain approach of H&E to further differentiate topology, specifically connective 

tissue. Masson’s trichrome method combines the most precise hematoxylin preparations (iron 

hematoxylin by Heidenhain or Weigert) with a specific cytoplasmic stain (acid fuchsin with 

xylidine ponçeau) and a highly selective stain for connective tissue (fast green FCF or aniline blue) 

(Goldner, 1938). Connective tissue is a broad term and encompasses various cells, fibers and 

A)      

B)      

C)      
Figure 26: Masson's Trichrome Stains of Control and Treatment Groups 12 Hours After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scale bar included. 
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amorphous ground substance. More specifically, connective tissues can be grouped into: 

connective tissue proper – includes loose or areolar, dense, regular and irregular adipose, and 

reticular; cartilage – hyaline elastic and fibrocartilage; bone – spongy or cancellous and dense or 

cortical; blood; and blood-forming – hematopoietic (Suvarna et al., 2012). In wound or injury 

repair, the most important connective tissue types are those that fill residual defects. These 

connective tissues are usually composed of cell types containing formed or fibrous intercellular 

substances (Robbins et al., 2010), providing great tensile strength to support damaged tissue 

(Suvarna et al., 2012). Formed elements in these structural connective tissues contain collagenic, 

reticular, and elastic-system fibers made up predominantly by collagen, reticulin, and elastic-

system proteins respectively. The component proteins should not be confused with the structural 

features. The results of various staining protocols on different types of connective tissue are 

shown in Table 5 [adapted from (Suvarna et al., 2012)]. What is clear from Table 5 is that 

connective tissues appear as the same color or colors under the listed stains. Histowiz, Inc. uses 

the aniline blue dye in their Masson’s trichrome protocol. Thus, areas stained light blue in Figure 

26, Figure 27, and Figure 28 indicate areas of connective tissue. 

Table 5: Results of Various Staining Protocols on Connective Tissue and Muscle 

Tissue 
Masson’s 
Trichrome 

van Gieson 
Martius Scarlet 

Blue 
Mallory’s PTAH 

Elastin N/A Yellow Blue Orange/Brown 

Collagen Blue/Green Red Blue Blue 

Reticulin Blue/Green Yellow Blue Orange/Brown 

BM Blue/Green Yellow Blue Orange 

Osteoid Blue/Green Red Blue Orange/Red 

Cartilage Varies Varies Varies Varies 

Fibrin Red Yellow Red Blue 

Muscle Red Yellow Red Blue 

Abbreviation: PTAH = Phosphotungstic Acid Hematoxylin; BM = Basement Membrane 
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 The organization of structural connective tissues can help identify their type. Collagenic 

fibers occur as individual arranged in an open-weave pattern like in areolar tissue or collagen 

fibers can be clumped together as large bundles to form structures of high tensile strength like 

tendons. Individual collagenic fibers do not branch, but bundles of collagenic fibers frequently 

have branching morphology (Suvarna et al., 2012). Reticular fibers appear as fine, delicate fibers 

that are usually anchored to high-strength bundles of Type I collagen fibers. Reticular fibers are 

arranged in a three-dimensional network to provide a system of support even down to the 

A)      

B)      

C)      
Figure 27: Masson's Trichrome Stains of Control and Treatment Groups 2 Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scale bar included. 
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individual cell level (Ushiki, 2002). The elastic-fiber system consists of oxytalan, elaunin, and 

elastic fibers with fibrillar, amorphous, or mixed structures, respectively. The three fibers 

represent different arrangements and compositions of elastin proteins and a microfibrillar 

scaffolding component termed elastic fiber microfibrillar protein (EFMP) (Suvarna et al., 2012). It 

is suggested that oxytalan and elaunin fibers contain immature elastin proteins, the 

differentiation between the two immature elastic-system fibers is the extent of elastin protein 

cross-linking (Schwartz and Fleischmajer, 1986). 

A)      

B)      

C)      
Figure 28: Masson's Trichrome Stains of Control and Treatment Groups 7 Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scales bar included. 
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 Initial evaluations by Dr. Barry H. Rickman of slides stained by H&E suggested that the 

proteinaceous exudate may be flocculated proteins, possibly from degenerating muscle fibers. 

However, after assessing the slides stained by Masson’s trichrome protocol, the lack of red 

dusting or staining (see Table 5) in these areas suggests it is unlikely that degenerating muscle 

fibers are contributing to this proteinaceous exudate. From the fact that there is no clear 

organization of fibers or connective tissue deposition in the areas of damage, the only conclusion 

from Masson’s trichrome stains is that the proteinaceous exudate identified in H&E stains is some 

type of connective tissue. Other stains are necessary to differentiate protein types. Qualitatively, 

there is no characteristic pattern of staining neither between control or treatment groups nor 

temporally from twelve hours to seven days status-post injury. 

Picrosirius Stain 

 Due to their fine structure, reticular fibers are difficult to see under light microscopy, 

especially when using H&E, but their argyrophilic proteoglycans produce dark stains when using 

any silver impregnation method (Suvarna et al., 2012). However, in cardiac tissue remodeling 

following injury, reticular fibers play little to no role in mediating repair (Robbins et al., 2010). 

Further investigations for reticular fibers were not explored. There are four major types of 

collagen protein, (Type I – Type IV) and several minor types. Type I collagen stains strongly with 

acid dyes (e.g. eosin) due to the presence of cationic groups on collagen protein. However, unlike 

collagen Type I, the other types of collagen are better differentiated through 

immunohistochemistry (Suvarna et al., 2012). Since validated axolotl antibodies are not 

commonly available, before moving to immunohistochemical methods to identify and/or 
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differentiate collagen in the area containing the proteinaceous exudate, a simple stain using the 

Sirius dye can help define connective tissue types. 

 The Sirius red dye intensely stains amyloid proteins and collagen fibers red under light 

microscopy (Suvarna et al., 2012). In addition to the deep color reaction, like the Congo red dye 

commonly used in amyloid pathology studies, Sirius red gives green birefringence under 

polarized light. This is attributed to the elongated structure of the Sirius red dye molecule that 

attaches to collagen fibers in such a way that their long axes are parallel (Vidal et al., 1982). Thus, 

Sirius red-positive collagen under aligned polarized light microscopy can appear red, orange, 

yellow, or green (the color change in order of decreasing thickness) (Rich and Whittaker, 2005). 

The use of circularly polarized light eliminates the requirement of aligning fibers to the 

transmission axis of the polarizing filter and allows visualizing all fibers simultaneously (Whittaker 

et al., 1994). Sirius red is sometimes used in solution with picric acid, as picrosirius solution (Sweat 

et al., 1964). The picric acid coagulates proteins and intensifies staining (Suvarna et al., 2012). 

 A review of picrosirius staining across 15 vertebrate species, representing the main 

vertebrate classes (fish, amphibians, reptiles, birds, and mammals) and using different organs 

from at least three specimens per class shows that all structures that stain red and exhibited signs 

of birefringency contain collagen (Junqueira et al., 1979). The study by Junqueira et al. does not 

outline which organs per vertebrate class were used or if the same organs were consistently 

stained for every specimen. Additionally, the study mentions three exceptions of structures that 

stain red that do not contain collagen: 1) keratohyaline granules of cornified epithelia; 2) mucus-

producing glands; and 3) fish hearts. Although no mention of any exception to picrosirius staining 

is stated about amphibian hearts, since it is unknown if amphibian hearts were used in the study 
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and based on the similarity of heart development, morphology, and ultrastructure [adult fish and 

amphibians have trabeculated hearts (Hu et al., 2001; Lemanski, 1973a, b)] confirming the 

picrosirius stain in axolotls is necessary. In-house picrosirius staining was performed and a 

representative result is shown in Figure 29. This axolotl’s heart was from the ischemia-induction 

time studies and was subject to thirty minutes of ischemia and the heart was sampled thirty days 

after the injury. Although an ischemia-reperfusion injury was not induced, collagen fibers are part 

of the normal axolotl heart structure, especially in the exterior wall. Exposing the heart sample 

to polarized light shows the presence of birefringent components, confirming picrosirius stains 

identify collagen in the axolotl heart.  

 Results of picrosirius stains of a naïve axolotl heart are shown in Figure 30. Representative 

results from picrosirius stains are shown in Figure 31, Figure 32, and Figure 33 for animals 

 
Figure 29: Picrosirius Staining of Axolotl Heart Viewed Under Polarized Light 
Results of picrosirius staining done in-house showing axolotl collagen fibers reacting with 
Sirius red dye. The alignment of the dye along collagen fibers is evident as the birefringence 
characteristics (red to green color scale) apply to axolotl tissue. 
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sacrificed twelve hours, two days, and seven days after ischemia-reperfusion injury respectively. 

Like the test-run in-house, the samples processed by Histowiz, Inc. predominantly show positive 

Sirius red dye staining at the heart border with some scattered positive-staining collagen fibers 

appearing within the area of damage. However, the proteinaceous material does not stain red, 

suggesting that this exudate is less likely to be collagen. Qualitatively, there is no characteristic 

pattern of staining neither between control or treatment groups nor temporally from twelve 

hours to seven days status-post injury. 

 

A)  

B)  
Figure 30: Picrosirius Stains of Naïve Axolotl Heart 
Views of naïve axolotl heart at A) 20X zoom and B) 40X zoom. Scale bar included. 
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A)      

B)      

C)      
Figure 31: Picrosirius Stains of Control and Treatment Groups 12 Hours After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scale bar included. 
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A)      

B)      

C)      
Figure 32: Picrosirius Stains of Control and Treatment Groups 2 Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scale bar included. 
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Acid Fuchsin Orange G Stain 

 Using H&E and trichrome staining in cardiac regeneration studies of the zebrafish, healing 

after apical resection (Major and Poss, 2007; Poss et al., 2002) and cryoinjury (Chablais et al., 

2011; Gonzalez-Rosa et al., 2011; Kikuchi et al., 2010; Schnabel et al., 2011) shows histopathology 

of cardiac remodeling with an acute-phase inflammatory exudate. In addition to fibrosis and scar 

tissue formation during inflammation, fibrin is an important constituent of this acute-phase 

inflammatory response and is found in areas of recent tissue damage (Suvarna et al., 2012). The 

A)      

B)      

C)      
Figure 33: Picrosirius Stains of Control and Treatment Groups 7 Days After Injury 
 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scale bar included. 
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acid fuchsin orange G (AFOG) stain can be used to differentiate the protein content in the 

remodeling areas and can extend findings from Masson’s trichrome stain. Developed in 1978 to 

study glomerular protein deposits in renal samples (Mihatsch and Bremer, 1978), staining results 

from that publication reveal protein deposits in glomerulus as: fibrin: red/deep red 

(fibrillar/threadlike appearance); serum: yellow to orange; amyloid: bluish-red; basement 

membrane: pale-blue; mesangial matrix: blue; cellular cytoplasm: grey to yellow-orange; cellular 

nuclei: orange-brown to black, collagen: blue; and erythrocytes: yellow-orange. 

 In a study with chronic follow-up over sixty days, AFOG staining in zebrafish subject to 

cardiac cryoinjury show a progressive evolution in the protein content within and bordering the 

injured cardiac tissue. Four days post cryoinjury (dpci), the injured myocardium is surrounded by 

non-muscle cells, most likely as a response to inflammation. By seven dpci, a border of fibrin has 

formed along the injured endocardium while loose, fibrillar collagen has infiltrated into the 

central portion of the injured area. At fourteen dpci, the outer edge of the fibrin layer has started 

to resolve and is beginning to be replaced by new cardiomyocytes while the central portion 

begins to form a mature network of collagen fibers. Twenty-one dpci, a new wall of 

cardiomyocytes has surrounded the injured area with fibrin almost completely resolved and the 

collagen network beginning to recede. By thirty dpci, no fibrin is present and the collagen 

network is markedly decreased. By sixty dpci, the infarct scar is nearly completely eliminated with 

rare collagen fibers scattered throughout the remodeled tissue (Chablais et al., 2011). This spatial 

and temporal Information about zebrafish cardiac tissue regeneration proceeds differently than 

the well-documented processes in mammalian cardiac tissue repair (Lilly, 2011; Robbins et al., 
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2010) and regeneration (Haubner et al., 2012; Porrello et al., 2011), warranting further 

investigation using AFOG tissue staining in the axolotl. 

 Results of AFOG stains of a naïve axolotl heart are shown in Figure 34. Representative 

results from AFOG stains are shown in Figure 35, Figure 36, and Figure 37 for animals sacrificed 

twelve hours, two days, and seven days after ischemia-reperfusion injury respectively. Unlike 

zebrafish heart regeneration that shows the appearance of intensely red flocculated fibrin 

aggregates and fibrous fibrin structures that are eventually cleared and replaced first by collagen 

fibers and eventually new cardiomyocytes (Schnabel et al., 2011), the results of the axolotl heart 

pathophysiology after AFOG staining indicate the proteinaceous exudate (AFOG staining: light- 

to pale-blue) exhibits basement membrane proteins. Furthermore, the lack of any red hue or 

A)  

B)  
Figure 34: AFOG Stains of Naïve Axolotl Heart 
Views of naïve axolotl heart at A) 20X zoom and B) 40X zoom. Scale bar included. 
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dusting in the proteinaceous exudate of the damaged axolotl tissue after AFOG staining make it 

unlikely that there is any fibrinoid material in this area. Fibrinoid is an eosinophilic material, 

regarded as a mixture of fibrin and other plasma-protein constituents, that stains identically to 

fibrin (Suvarna et al., 2012). Qualitatively, there is no characteristic pattern of staining neither 

between control or treatment groups nor temporally from twelve hours to seven days status-

post injury. 

A)      

B)      

C)      
Figure 35: AFOG Stains of Control and Treatment Groups 12 Hours After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scale bar included. 
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 Regardless of location in the body, all basement membranes contain a common set of 

proteins that include laminin, collagen Type IV, various heparan sulfate proteoglycans, and 

entactin/nidogen (Martin and Timpl, 1987). Light microscopy with immunofluorescence or 

immunohistochemical enhancement lacks the resolving power to resolve subtle differences in 

the distribution of these components within intact basement membranes or to differentiate 

basement membrane from immediately adjacent tissue (Martinez-Hernandez and Chung, 1984). 

Follow-up studies have relied upon immunoelectron microscopy (electron 

immunohistochemistry) to identify and differentiate laminin and entactin within basement 

membrane tissue (Laurie et al., 1982b; Madri et al., 1980), finding that the four commonly-found 

proteins in basement membrane do not occur as separate layers, but are integrated into a 

common structure (Laurie et al., 1982a; Martin and Timpl, 1987). Since the proteinaceous 

exudate does not appear to have any structural organization (e.g. fibrous structures or cross-

linking networks of fibrillar components), the basement membrane proteins identified by pale-

blue staining using the AFOG protocol may be proteins soluble in plasma. 

 Heparan sulfate proteoglycans (HSPGs) are glycoproteins that can be divided into three 

types: membrane HSPGs (e.g. syndecans and glypicans); secreted ECM HSPGs (e.g. agrin and 

perlecan); or secretory vesicle proteoglycans (e.g. serglycin). Membrane-bound and secreted 

HSPGs can bind cytokines, chemokines, growth factors, and morphogens to protect these 

molecules from degradation by proteolysis. Alternatively, HSPGs can bind proteases or protease 

inhibitors directly to mediate protein metabolism and turnover (Sarrazin et al., 2011). 

 As discussed in the section titled “Molecular Signaling Pathways Mediating Cardiac 

Repair”, pathways of embryogenesis and development are generally believed to be activated 
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after tissue injury. Growth factors such as PDGF and FGF play a crucial role in the spatiotemporal 

control of cellular movement in development and repair. The exact mechanisms of how these 

cues are regulated are areas of intense research. Interestingly, it is suggested that heparan 

sulfates bound to proteins of the ECM modulate PDGF (Symes et al., 2010) and FGF (Ornitz and 

Itoh, 2001) function. 

 In contrast to HSPGs bound to ECM proteins, the ectodomain of the syndecan family of 

transmembrane HSPGs, specifically syndecan-1 and syndecan-4 were found to be constitutively 

shed from cultured cells, with shedding accelerated by epidermal growth factor and thrombin (a 

A)      

B)      

C)      
Figure 36: AFOG Stains of Control and Treatment Groups 2 Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scale bar included. 
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protease) (Subramanian et al., 1997). These factors are known to be upregulated during 

inflammation and wound repair (Robbins et al., 2010). Plasma levels of syndecan-4 were 

measured in normal human subjects and human patients after an acute MI. Like the results in 

cultured cells, two-weeks after suffering an acute MI, peak levels of plasma syndecan-4 were 

about one-hundred times greater than levels in normal subjects, attributed to the accumulation 

of proteases from leukocytes and growth factors induced through inflammation. Furthermore, 

immunohistochemical analyses of heart samples from autopsied patients using the specific anti-

A)      

B)      

C)      
Figure 37: AFOG Stains of Control and Treatment Groups 7 Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Control 
animal. B) Animal treated with medium-dose butorphanol. C) Animal treated with high-dose 
butorphanol. Scale bar included. 
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human syndecan-4 antibody (anti-ryudocan) stained newly injured tissues undergoing repair 

while old infarct scars and undamaged areas were left unstained (Kojima et al., 2001). Kojima et 

al. hypothesize in their study that the increased plasma syndecan-4 originates from the 

inflammatory fluid of cardiac tissues injured by myocardial infarction. Syndecan-4 has been 

shown to have specific binding affinities to heparin-binding growth factors such as basic FGF 

(bFGF) and VEGF (Woods et al., 1998), factors important for tissue repair and angiogenesis, 

respectively (Robbins et al., 2010). Considering the large number of cytokines, chemokines, 

growth factors, morphogens, proteases and protease inhibitors, soluble syndecan-4 may function 

as a tissue-repairing molecule. Its localization in healing hearts from autopsied patients also 

suggest that it can play a specific role in mediating cardiac tissue repair. 

 The unidentified protein identified as a homogenous, glassy, and pink substance in H&E 

staining is best characterized as hyaline change. This widely-used descriptive term applies to any 

alteration within cells or the extracellular space and is used more to capture general 

appearances, rather than as an indicator of cellular or tissue injury. This histological 

characterization denotes a spectrum of changes and not a specific pattern of protein secretion 

or accumulation (Robbins et al., 2010). Examples of intracellular accumulations of hyaline protein 

are found in alcoholic liver disease, Kaposi’s sarcoma, and malignant fibrous histiocytoma. 

Hyaline accumulations found extracellularly are found predominantly in adenoid cystic 

carcinomas, endodermal sinus tumors, and diabetic glomerular nodular sclerosis (Barsky and 

Hannah, 1987). 

 Using highly specific antibodies to Type IV collagen and laminin, Barsky et al. tested the 

immunoreactivity of hyaline bodies found extracellularly in six disease processes and compared 
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results to hyaline bodies found intracellularly in three disease processes. The results showed a 

clear difference: all hyaline bodies found in extracellular settings displayed strong 

immunoreactivity for the basement membrane components of type Iv collagen and laminin, 

while the hyaline bodies found intracellularly were unreactive to the antibodies. This suggest a 

common origin of proteins for hyaline bodies found extracellularly that is markedly different from 

the histologic origin of hyaline bodies found intracellularly. The pathophysiologic implications 

points to the stimulation of hyperactive production of basement membrane protein synthesis by 

cells that normally produce and secrete basement membrane proteins. However, as many cell 

types synthesize type Iv collagen and laminin [see (Timpl and Dziadek, 1986) for a partial listing], 

the major contributor of hyaline change proteins in the regenerating axolotl heart following 

ischemia-reperfusion injury remains to be elucidated. 

 In summary, H&E, Masson’s trichrome, picrosirius, and AFOG staining results of axolotl 

hearts healing after ischemia-reperfusion injury show characteristics that are unique to this 

animal. The exact make up of inflammatory infiltrate in the region of injury is unknown, but is 

likely to be a protein involved in hyaline change. Follow-up studies with axolotl-specific 

antibodies to connective tissue proteins and visualization using high-resolution electron 

microscopy can help identify the components involved in cardiac tissue repair following ischemia-

reperfusion injury in the axolotl. 

Immunohistochemistry 

 Negative control results for BrdU staining using a naïve axolotl heart are shown in Figure 

38. A BrdU-positive cardiomyocyte is shown in the 40X view, evidence of nucleotide 

incorporation due to DNA synthesis is occurring in uninjured hearts. Representative results from 
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BrdU immunohistochemistry (IHC) stains are shown in Figure 39, Figure 40, and Figure 41 for 

animals sacrificed twelve hours, two days, and seven days after ischemia-reperfusion injury 

respectively. Slight-positive/lightly-dusted and strong BrdU-positive nuclei are present. There is 

very strong background staining evident, including a large portion of RBCs, in all areas of myocyte 

damage and hemorrhage, along with positive edge effects. The remote region containing 

undamaged tissue has lower background staining. RBCs can be differentiated from CMs by the 

presence of a translucent plasma membrane bordering the RBCs. 

 

A)  

B)  
Figure 38: BrdU Immunohistochemistry of Naïve Axolotl Heart 
Views of naïve axolotl heart at A) 20X zoom and B) 40X zoom. Histology features: BrdU-
positive nuclei (red arrow). Not all views contain an instance of each histologic feature, each 
histologic feature not annotated. Scale bar included. 
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A)      

B)      

C)      
Figure 39: BrdU Immunohistochemistry of Control and Treatment Groups 12 Hours After 
Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. 
Histology features: BrdU-positive nuclei (red arrows) and slight-positive/lightly-dusted BrdU-
positive nuclei (purple arrows). Not all views contain an instance of each histologic feature, 
each histologic feature not annotated. Scale bar included. 
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 The BrdU nucleotide incorporation assay is a common approach to determine the extent 

of cardiomyocyte proliferation, using the fact that nucleotide analogs are incorporated into the 

DNA strands during DNA synthesis, thus labeling cells during the S-phase of the cell cycle. 

However, caution must be applied as DNA synthesis takes place because of multiple cellular 

events. DNA synthesis not only occurs during semiconservative DNA replication, but also during 

DNA repair. Furthermore, a cell may stop cell-cycle progression after S-phase: nucleotide-

A)      

B)      

C)      
Figure 40: BrdU Immunohistochemistry of Control and Treatment Groups 2 Days After Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. 
Histology features: BrdU-positive nuclei (red arrows) and slight-positive/lightly-dusted BrdU-
positive nuclei (purple arrows). Not all views contain an instance of each histologic feature, 
each histologic feature not annotated. Scale bar included. 
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progression assays do not indicate if a cell will continue to divide or undergo G2/M arrest, 

polyploidization, or polynucleation. Without additional proliferation assays to distinguish other 

stages of the cell cycle, cytokinesis, or karyokinesis, qualitatively, the 250 mg/kg BrdU single-

bolus injection labels cardiac cell activity. Differences between control or treatment groups and 

temporally from twelve hours to seven days status-post injury are assessed in the section titled 

“Quantitative Assessments of Pathology”. 

A)      

B)      

C)      
Figure 41: BrdU Immunohistochemistry of Control and Treatment Groups 7 Days After Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. 
Histology features: BrdU-positive nuclei (red arrows) and slight-positive/lightly-dusted BrdU-
positive nuclei (purple arrows). Not all views contain an instance of each histologic feature, 
each histologic feature not annotated. Scale bar included. 
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 Negative control results for TUNEL staining using a naïve axolotl heart are shown in Figure 

42. No evidence of light dusting or strong-positive TUNEL cardiomyocytes are present. 

Representative results from TUNEL immunohistochemistry stains are shown in Figure 43, Figure 

44, and Figure 45 for animals sacrificed twelve hours, two days, and seven days after ischemia-

reperfusion injury respectively. The background staining varies but is always stronger at the 

region of ischemia. Only cardiomyocytes with nuclei that are TUNEL-positive and have not started 

the process of apoptosis (pyknosis, karyorrhexis, or karyolysis) or necrosis are annotated in the 

figures. Differences between control or treatment groups and temporally from twelve hours to 

seven days status-post injury are assessed in the section titled “Quantitative Assessments of 

Pathology”. 

A)  

B)  
Figure 42: TUNEL Immunohistochemistry of Naïve Axolotl Heart 
Views of naïve axolotl heart at A) 20X zoom and B) 40X zoom. Scale bar included. 
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A)      

B)      

C)      
Figure 43: TUNEL Immunohistochemistry of Control and Treatment Groups 12 Hours After 
Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. 
Histology features: TUNEL-positive nuclei (red arrows) and slight-positive/lightly-dusted 
TUNEL-positive nuclei (purple arrows). Not all views contain an instance of each histologic 
feature, each histologic feature not annotated. Scale bar included. 
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A)      

B)      

C)      
Figure 44: TUNEL Immunohistochemistry of Control and Treatment Groups 2 Days After 
Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. 
Histology features: TUNEL-positive nuclei (red arrows) and slight-positive/lightly-dusted 
TUNEL-positive nuclei (purple arrows). Not all views contain an instance of each histologic 
feature, each histologic feature not annotated. Scale bar included. 



www.manaraa.com

140 

 

 For cardiac muscle myosin, initial optimizations were performed with a commercially-

available antibody (Abcam AB185967). Although amphibian or axolotl reactivity is not listed on 

the manufacturer’s website, a simple analysis using basic local alignment search tool (BLAST) on 

the www.ambystoma.org website suggest sequence overlap of MYH7 (myosin heavy chain, 

cardiac muscle beta isoform) between mouse and axolotl genes. However, results for Abcam 

A)      

B)      

C)      
Figure 45: TUNEL Immunohistochemistry of Control and Treatment Groups 7 Days After 
Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. 
Histology features: TUNEL-positive nuclei (red arrows) and slight-positive/lightly-dusted 
TUNEL-positive nuclei (purple arrows). Not all views contain an instance of each histologic 
feature, each histologic feature not annotated. Scale bar included. 

http://www.ambystoma.org/
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AB185967 showed only light positive dusting of RBC nuclei at 1:100 and 1:200 dilution ratios and 

not features of myosin chains in the intracellular environment of cardiomyocytes. Another 

commercially-available antibody (Abcam AB50967) was used, showing light background staining 

in the injured areas, but most light positive dusting is again in the nuclei of RBCs and some 

cardiomyocytes – expected staining of myosin features in the intracellular environment of 

cardiomyocytes is not present. 

 Negative control results for cardiac muscle myosin staining using a naïve axolotl heart are 

shown in Figure 46. Representative results from cardiac muscle myosin (Abcam AB50967) 

immunohistochemistry stains are shown in for animals sacrificed twelve hours, two days, and 

seven days after ischemia-reperfusion injury respectively. Cardiac muscle myosin is negative 

A)  

B)  
Figure 46: Cardiac Muscle Myosin Immunohistochemistry of Naïve Axolotl Heart 
Views of naïve axolotl heart at A) 20X zoom and B) 40X zoom. Scale bar included. 
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compared to control with dusting in the cytoplasm of a few cardiomyocytes, endothelium, and 

RBCs while other cardiomyocytes show strong intracellular staining while the area of ischemia 

has edge artifacts. There is no specificity or consistency to cell type or cellular feature. The 

expectation of cytoplasmic staining of intact myofibrils is not present – the tested antibodies do 

not cross-react with axolotl cardiac muscle myosin. Further quantitative assessments are not 

performed. 

A)      

B)      

C)      
Figure 47: Cardiac Muscle Myosin Immunohistochemistry of Control and Treatment Groups 
12 Hours After Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. Not 
all views contain an instance of each histologic feature, each histologic feature not annotated. 
Scale bar included. 
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A)      

B)      

C)      
Figure 48: Cardiac Muscle Myosin Immunohistochemistry of Control and Treatment Groups 
2 Days After Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. Not 
all views contain an instance of each histologic feature, each histologic feature not annotated. 
Scale bar included. 
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 For non-muscle myosin IIB, initial optimizations were performed with a commercially-

available antibody (Abcam AB684). Although amphibian or axolotl reactivity is not listed on the 

manufacturer’s website, a simple analysis using basic local alignment search tool (BLAST) on the 

www.ambystoma.org website suggest sequence overlap of MYH10 (non-muscle myosin II heavy 

chain-B) between mouse and axolotl genes. After a test run of dilutions from 1:200 to 1:8000, 

results of 1:5000 showed the best results. 

A)      

B)      

C)      
Figure 49: Cardiac Muscle Myosin Immunohistochemistry of Control and Treatment Groups 
7 Days After Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. Not 
all views contain an instance of each histologic feature, each histologic feature not annotated. 
Scale bar included. 

http://www.ambystoma.org/


www.manaraa.com

145 

 

 Negative control results for non-muscle myosin staining using a naïve axolotl heart are 

shown in Figure 50. Representative results from non-muscle myosin IIB (Abcam AB684) 

immunohistochemistry stains are shown in for animals sacrificed twelve hours, two days, and 

seven days after ischemia-reperfusion injury respectively. Proteinaceous exudate is positive. Very 

weak (possibly background) to strongly positive staining of ischemic region, with no pattern 

evident to treatment type. There is no specificity or consistency to cell type or cellular feature. 

The expectation of cytoplasmic staining of nascent myofibrils is not present – the antibody tested 

reacts with multiple axolotl proteins. Further quantitative assessments are not performed. 

A)  

B)  
Figure 50: Non-Muscle Myosin Immunohistochemistry of Naïve Axolotl Heart 
Views of naïve axolotl heart at A) 20X zoom and B) 40X zoom. Scale bar included. 
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A)      

B)      

C)      
Figure 51: Non-Muscle Myosin Immunohistochemistry of Control and Treatment Groups 12 
Hours After Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. Not 
all views contain an instance of each histologic feature, each histologic feature not annotated. 
Scale bar included. 
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A)      

B)      

C)      
Figure 52: Non-Muscle Myosin Immunohistochemistry of Control and Treatment Groups 2 
Days After Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. Not 
all views contain an instance of each histologic feature, each histologic feature not annotated. 
Scale bar included. 
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Quantitative Assessments of Pathology 

Hyaline Change 

 Closer review of H&E stains shows a proteinaceous exudate (see blue asterisk in Figure 

17) present in all injured hearts, which we have termed hyaline change. Using image analysis 

software Fiji (Schindelin et al., 2012) [a distribution of ImageJ (Schindelin et al., 2015; Schneider 

et al., 2012)] the amount of exudate in each sample was quantified using the Color Threshold 

A)      

B)      

C)      
Figure 53: Non-Muscle Myosin Immunohistochemistry of Control and Treatment Groups 7 
Days After Injury 
All views are at 20X zoom with the left-hand views are from a field in the ischemic region while 
the right-hand views are from a field in the remote region. A) Control animal. B) Animal 
treated with medium-dose butorphanol. C) Animal treated with high-dose butorphanol. Not 
all views contain an instance of each histologic feature, each histologic feature not annotated. 
Scale bar included. 
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function (Image  Adjust  Color Threshold). Thresholding, also known as segmentation, 

separates pixels which fall into a designated range of values, based on the color space in use, 

from those pixels that do not satisfy the desired values. To process the H&E stains, the HSB (Hue, 

Saturation, and Brightness) color space was used with the “Default” thresholding algorithm. The 

thresholding values shown in Figure 54A were used to highlight areas containing the 

proteinaceous exudate. To systematically process the images, a sample map was created 

identifying ten fields within each area to sample. The sampling map is found in Figure 54B. 

 Examples of the thresholding algorithm highlighting the areas of proteinaceous exudate 

are shown in Figure 55. Once the areas are selected, the measure function in Fiji (Analyze  

Measure) determines the number of pixels that were selected. The percent area covered by the 

A)  B)  
Figure 54: Image Analysis Settings & Sampling Map 
A) The values shown in this dialog box were used to segment loaded image files in Fiji into 
areas correspond to the light-pink proteinaceous exudate present in H&E histology stains. B) 
The sampling map to process histologic sections for proteinaceous exudate/edema. 
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proteinaceous exudate is determined by dividing this measured area by the total number of 

pixels in each image (Image Resolution: 1913 x 1171 – See status bar of Fiji window in Figure 55). 

 For each heart sample, the amount of proteinaceous exudate coverage in the field of view 

was calculated for the ten sampling fields. In SPSS, each treatment group, consisting of three to 

four animals (n = 3 – 4) were compared to each other based on time of euthanasia: 12-hours, 48-

hours, and 7-days post ischemia-reperfusion injury. Using univariate one-way ANOVA, the 

following are the between group p-values: 

Table 6: Significance of ANOVA Testing for Proteinaceous Exudate Pathology 

Group 12-hour Samples 48-hour Samples 7-day Samples 

F Statistic F(2,8) = 6.280 F(2,7) = 0.816 F(2,5) = 0.984 

Significance p = 0.023 p = 0.480 p = 0.984 

A)  B)  

C)  
Figure 55: Examples of Histology Image Thresholding Using Fiji 
A) Raw H&E image. B) H&E image after color thresholding using HSB values in text. C) Area 
selection (“Select” button in Threshold Color dialog box) for Measure function (Analyze  
Measure) in Fiji. 
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Since the 12-hour samples means are statistically significant from each other, post-hoc multiple 

comparisons were performed and corrected using Tukey’s Honest Significant Difference (HSD) 

test. The data show that the only significant difference is between the medium-dose and high-

dose animals (p = 0.020). Since the test statistic that is of interest is the difference between 

control and treatment groups, it is concluded that there is no difference in proteinaceous content 

between control and treatment groups across all euthanasia time points. From this conclusion, 

all samples were collapsed across time to see if there is a difference between all control animals 

and all animals treated with medium-dose butorphanol and all animals treated with high-dose 

butorphanol. 

 After grouping all animals under the same treatment group (control: n = 9; medium dose: 

n = 9; high dose: n = 11), SPSS was again used to run a univariate one-way ANOVA. There was a 

statistically significant difference between the amount of exudate across all three groups, F(2,26) 

= 3.430, p = 0.048. Since the omnibus test suggests a statistical difference between the groups, 

post-hoc multiple comparisons were performed and corrected using Tukey’s Honest Significant 

Difference (HSD) test. The data show that the only significant difference is between the medium-

dose and high-dose animals (p = 0.038). Since the test statistic that is of interest is the difference 

between control and each of the treatment groups, it is concluded that there is no difference in 

proteinaceous content between control and treatment groups. A graph of the mean exudate area 

with error bars denoting the standard error the mean across all animals in the group is found in 

Figure 56. 
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Immunohistochemistry 

 Ordinal scoring rubrics for other clinically relevant pathology were developed and 

statistics evaluated by Kruskal-Wallis one-way ANOVA for unrelated samples and two-sample 

Kolmogorov-Smirnov testing for post-hoc analysis comparing treatment to control. In these non-

parametric tests, low-ranked scores translate to histology features closer to features denoted by 

a score of zero (see Table 7). TUNEL testing is significant (p < 0.001) for more DNA breaks with 

high-dose butorphanol at twelve hours after injury compared to control. BrdU testing is 

significant (p < 0.001) for less cellular turnover with mid-dose butorphanol, but greater cellular 

turnover with high-dose butorphanol at forty-eight hours after injury compared to control. 
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Figure 56: Coverage of Proteinaceous Exudate Area in H&E Histology Samples 
The percentage of the field of view covered by the proteinaceous exudate. The error bars 
denote the standard error of the mean across all animals in the group. 
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Table 7: Histology Scoring Rubric in Experiment 4 

Test 
Score (Based on High-Power Field [40X]) 

Lowest Highest 

TUNEL 0: None 5: > 80% of strong nuclear staining in CM cells in 5+ fields. 

BrdU 0: None 
3: Few to moderate (multifocal) positive CMs ± endothelial cells, 

usually not in area damaged. 

Heterophils 0: None 5: Diffuse infiltration of large numbers of heterophiles. 

Lymphocytes 0: None 3: Numerous lymphocytic infiltrates. 

Conclusion: Drugs and doses used did not demonstrate a consistent dose or time dependent 

effect on tissue pathology. 

Study deviations: None. 

Unanticipated findings: Cardiac muscle myosin and non-muscle myosin IIB IHC did not provide 

conclusive results. 

Troubleshooting: Antibody optimization was performed at contracted third-party. 

 
Figure 57: Results of Pathology Evaluations in GLAS Experiment 4 
Pathology scoring results for four different pathologic features versus treatment and time. 

Significance:  p < 0.020,  p < 0.001. 
Legend:     Control; Butorphanol (    Mid) and (    High) 
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Future directions: Additional time points (chronic studies) should be used to determine long-term 

impact of significant findings associated with changes to tissue pathology. Also, additional 

dosages or drugs could be tested in the future. 

Specific Aim 2 

Surgical Outcomes 

 Prior to the start of experiments in Specific Aim 2, some animals from the University of 

Wisconsin (UW) experienced bouts of anorexia. Ectoparasites like Ichthyobodo necator, 

Chilodonella uncinate, and various species from the genus Trichodina were found from skin 

scrapings on multiple animals. Animals were treated with one, eight-hour baths of formalin 

solution (0.025 mL per 1L of 50% Holtfreter’s solution) and a follow-up eight-hour bath at a higher 

strength (0.050 mL per 1L of 50% Holtfreter’s solution). Any animals that did not recover to 

baseline feeding behavior were not used in the long-term follow-up studies of Specific Aim 2 – 

four of the animals from UW were not allowed to enter the study, resulting in twenty-six from 

UW and twenty-from newly-ordered animals from the University of Kentucky (UK). 

 In total, fifty operations (n = 50) were performed in this set of experiments. Animals were 

separated based on origin (UW and UK) with one animal per follow-up group undergoing a sham 

procedure and used as a naïve heart sample. Although experiments were design to have eight 

animals per origin and time point for heart collection, some clinical events during the 

experiments required changes to experimental groupings and animal husbandry. Although no 

surgical complications occurred, eleven animals from UW showed inappetence following 

induction of ischemia-reperfusion injury and were removed from the study. With the genetic 

lineage of the UW animals unknown, a group of animals were sacrificed fifteen days after surgery 
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to see if a robust healing response was observed. This helped prepare surgical and harvesting 

schedules for the animals arriving from UK that have more traceable genetic origins. With 

evidence of gross tissue injury after fifteen days, no adjustments to the euthanasia schedule were 

required. The endpoint of ninety days was maintained given published results of the complete 

rescue of the partial ventricular amputation of axolotl hearts (Cano-Martinez et al., 2010). The 

final experimental groups are as follows: 

Table 8: Final Experimental Groupings for Chronic Ischemia-Reperfusion Studies 

Animal Origin 
Days of Follow-Up Before Euthanasia 

15-Days 30-Days 60-Days 90-Days 

University of 
Wisconsin 

7 
(1 as sham) 

N/A 
4 

(1 as sham) 
4 

(1 as sham 

University of 
Kentucky 

N/A 
8 

(1 as sham) 
8 

(1 as sham) 
8 

(1 as sham) 

 
Qualitative Assessments of Pathology 

Simple Stains 

 Although the acute follow-up studies (one-half-day, two-days, and seven-days follow-up 

following ischemia-reperfusion injury) were performed in Specific Aim 1, they are included here 

to create a complete timeline of axolotl cardiac tissue response from twelve hours (one-half-day) 

to ninety-days following ischemia-reperfusion injury. Results reported in Specific Aim 1 are 

derived from animals all sourced from the University of Kentucky. 

One-Half Day (Twelve Hours) Status-Post Ischemia Reperfusion Injury 

 Representative results of Mayer’s hematoxylin/eosin (H&E) stains staining in the ischemic 

region of damaged hearts are shown in Figure 22 animals sacrificed twelve hours (one-half day) 

after ischemia-reperfusion injury. There is evidence of massive hemorrhage up to the very border 

of the heart wall (paralleling the appearance of the gross heart picture in Figure 15) and into 
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tissue spaces that are separate from spaces defined by cardiac sinuses and free areas between 

trabeculated myocardium that allow for RBC perfusion. Although some fibers are still organized 

like normal myocardium, they exhibit evidence of intracellular derangements. Evidence of 

progressive muscle fiber damage include wavy fibers (elongated and narrow) that are common 

in acute ischemia-reperfusion injuries (Robbins et al., 2010) to myocardium thinning and 

dissolution with these fibers lacking basophilic contents (no nucleic material remains) 

representing coagulative necrosis. There is wide coverage of hyaline change (light pink) that does 

not represent non-specific binding to the glass slide as there are areas within the ischemic zone 

that are free of the pink hyaline change. Finally, in addition to the dissolution of nuclear material 

denoting necrosis, pyknosis, karyorrhexis, and karyolysis of some cellular nuclei is evidence of 

apoptosis. 

 Results of Masson’s trichrome stains of a naïve axolotl heart are shown in Figure 25. 

Representative results from Masson’s trichrome staining in the ischemic region of damaged 

hearts are shown in Figure 26 for animals sacrificed twelve hours (one-half day) after ischemia-

reperfusion injury. Comparing the naïve heart to the damaged heart show clear differentiation 

between damaged myocardium (deep purple) in region of ischemia-reperfusion injury versus 

healthy myocardium in remote/undamaged region (deep burgundy). Myocardium thinning and 

dissolution reflects the same results as H&E stains. In contrast to the organized, deep-blue 

staining of intact collagen at the heart-border wall in Figure 25, the damaged hearts exhibit 

hyaline change that stains like connective tissue but at a lower intensity (pale blue). Areas of light 

purple reflect the possibility of deep burgundy-staining myofibers with the pale blue hyaline 

change in the background. 
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 Representative results from AFOG stains are shown in Figure 35 for animals sacrificed 

twelve hours (one-half day) after ischemia-reperfusion injury respectively. Although the samples 

have been overstained, the lack of bright-red staining communicates that fibrin is not present, 

but the glassy, pale-blue staining in-between myocardium support the notion that basement 

membrane proteins predominantly make up the hyaline change found in H&E staining. The wide-

spread pale-blue staining is clearly absent in naïve hearts, shown in Figure 34. Supporting 

evidence of myocardium thinning and dissolution confirms what is seen in H&E and Masson’s 

Trichrome stains. 

Two Days Status-Post Ischemia-Reperfusion Injury 

 Representative results of H&E staining in the ischemic region of damaged hearts are 

shown in Figure 23 for animals sacrificed two days after ischemia-reperfusion injury. There is 

evidence of the ongoing presence of massive hemorrhage into the myocardial tissue space and 

up to the border of the heart wall (paralleling the appearance of the gross heart picture in Figure 

58). Further myocardial-fiber thinning and dissolution continues with many fibers beginning to 

 
Figure 58: Heart from an Axolotl 2 Days Post Injury 
Gross view of an axolotl heart 2 days post mechanical induction of ischemia-reperfusion 
injury. Hemorrhaging at the site of clamp application is evident after heart is rinsed with 
heparin lock solution and amphibian saline. 
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stain entirely light pink throughout, suggesting complete destruction of nucleic material. For 

myocardial fibers that are still partially intact, they are loosely organization with evidence of 

intracellular derangements and destruction of nuclear material, portending their commitment to 

cellular death pathways. 

 Representative results from Masson’s trichrome staining in the ischemic region of 

damaged hearts are shown in Figure 27 for animals sacrificed two days after ischemia-

reperfusion injury respectively. Damaged myocardium in ischemia-reperfusion injury continue to 

stain deep purple compared to the deep burgundy color of normal myofibers (see Figure 25). The 

damaged hearts continue to exhibit hyaline change that stains like connective tissue but at a 

lower intensity (pale blue). 

 Representative results from AFOG stains are shown in Figure 36 for animals sacrificed two 

days after ischemia-reperfusion injury. Although the samples have been overstained, the lack of 

bright red staining continues to support the evidence that fibrin is not present, but rather 

basement membrane proteins denoted by pale-blue staining predominantly make up the hyaline 

change. Supporting evidence of myocardium thinning and dissolution continues to confirm what 

is seen in H&E and Masson’s Trichrome stains. 

Seven Days Status-Post Ischemia-Reperfusion Injury 

 Representative results of H&E staining in the ischemic region of damaged hearts are 

shown in Figure 24 for animals sacrificed seven days after ischemia-reperfusion injury. The 

damage at seven days post ischemia-reperfusion injury parallels the histopathology two days 

following ischemia-reperfusion injury. There is continued evidence of ongoing hemorrhage into 

the myocardial tissue space and up to the border of the heart wall (paralleling the appearance of 
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the gross heart picture in Figure 16). Myocardial-fiber thinning and dissolution continues with 

many fibers continuing to stain entirely light pink throughout, suggesting complete destruction 

of nucleic material. For myocardial fibers that are still partially intact, they are loosely 

organization with evidence of intracellular derangements, destruction of nuclear material, or 

evidence of pyknosis, karyorrhexis, and karyolysis, portending their commitment to cellular 

death pathways. 

 Representative results from Masson’s trichrome staining in the ischemic region of 

damaged hearts are shown in Figure 28 for animals sacrificed seven days after ischemia-

reperfusion injury respectively. The damage at seven days post ischemia-reperfusion injury 

parallels the histopathology two days following ischemia-reperfusion injury. Damaged 

myocardium in ischemia-reperfusion injury continue to stain deep purple compared to the deep 

burgundy color of normal myofibers (see Figure 25). Interestingly, the myocardium fibers have 

mostly degraded in the high-dose animals (see Figure 28C). Without the burgundy color mixing, 

the damaged hearts exhibit hyaline change that stains like connective tissue but at a lower 

intensity (pale blue). 

 Representative results from AFOG stains are shown in Figure 37 for animals sacrificed 

seven days after ischemia-reperfusion injury respectively. The damage at seven days post 

ischemia-reperfusion injury parallels the histopathology two days following ischemia-reperfusion 

injury. Although the samples have been overstained, the continued lack of bright red staining 

continues to support the evidence that fibrin does not play a role in acute tissue regeneration in 

the axolotl, unlike the process that occurs in the zebrafish. In that animal model, fibrin is preset 

four to seven days following injury in the zebrafish (Chablais et al., 2011). In axolotls, instead of 



www.manaraa.com

160 

 

fibrin, basement membrane proteins denoted by pale-blue staining predominantly make up the 

proteins that are present in the healing heart tissue. Supporting evidence of ongoing myocardium 

thinning and dissolution continues to confirm what is seen in H&E and Masson’s Trichrome stains 

one-half and two days after ischemia-reperfusion injury. 

Fifteen Days Status-Post Ischemia-Reperfusion Injury 

 Animals sacrificed fifteen days after ischemia reperfusion injury all originated from the 

University of Wisconsin (UW). All animals analyzed at fifteen days after ischemia-reperfusion 

injury are young-to-normal adults (about three years of age at euthanasia). Since the genetic 

lineage of these animals is not traceable to a known origin, these results are observational and 

reported for completeness since they are results from older animals and animals that are 

genetically heterogenous compared to the animal colony kept by the University of Kentucky (UK) 

Ambystoma Genetic Stock Center (AGSC). The AGSC raise axolotls for research purposes with 

funding from the Office of the Director at the National Institutes of Health (P40-OD019794). 

 Representative results of H&E staining in the ischemic region of damaged hearts are 

shown in Figure 60B for animals sacrificed fifteen days after ischemia-reperfusion injury. 

Although hemorrhage is evident in the gross picture of the heart (see Figure 60A) and is 

supported by large agglomerations of RBCs in the interior of the ischemic region, the hemorrhage 

no longer saturates areas near the heart border wall (see the 20X view in Figure 60B). 

Additionally, infiltration of white blood cells (see Figure 59: Blood Cells of Amphibians) has 

become more apparent by fifteen days after ischemia-reperfusion injury as seen in by the 

azurophils and basophils in the lower left corner and a neutrophil below the slide thumbnail in 

the upper right corner of the 40X H&E view (see Figure 60B). Furthermore, there is now a growing 
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thickness to the injured wall composed of connective tissue and disorganized myofibers 

(compare border wall of H&E stains to border wall of Masson’s trichrome and AFOG stains in 

Figure 60). This thickening border is mostly acellular, with scatterings of infiltrating WBCs, 

possible myofibroblasts, and evidence of new myocardial cells indicated by elongated, oblong-

shaped nuclei that stain light-blue. 

 Representative results of Masson’s trichrome staining in the ischemic region of damaged 

hearts are shown in Figure 60C for animals sacrificed fifteen days after ischemia-reperfusion 

injury. The results of this stain confirm the presence of a nicely delineated tissue border that is 

not infiltrated by hemorrhaged blood. However, unlike the one-half-, two-, and seven-day 

samples stained with Masson’s trichrome, the protein exudate stains pink instead of pale blue. 

The reason behind this change of protein staining is unknown. Based on Table 5, the tissues that 

stain red include muscle and fibrin. Per the results of AFOG staining in these animals (see below), 

 
Figure 59: Blood Cells of Amphibians 
A) Amphibian blood cells: (a.) Red blood cell (erythrocyte), (b.) polychromatic erythrocyte, (c.) 
thrombocytes, (d.) neutrophil, (e.) heterophil, (f.) eosinophil, (g.) basophil, (h.) small 
lymphocyte, (i.) monocyte, and (j.) azurophil. Reference: (Claver and Quaglia, 2009)z 
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the pink protein is less likely to be fibrin. However, one cannot discount loose or disorganized 

nascent myofibrils agglomerations or secretions from myofibroblasts that may contribute to 

A)  

B)      

C)      

D)      
Figure 60: Representative Histologic Results of Axolotl Hearts Fifteen Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Gross view 
of the injured heart showing area of injury with gross hemorrhage evident. B) Hematoxylin 
and eosin stain. C) Masson’s trichrome stain. D) Acid fuchsin orange G stain. Scale bar 
included. 
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these staining results. 

 Representative results of AFOG staining in the ischemic region of damaged hearts are 

shown in Figure 60D for animals sacrificed fifteen days after ischemia-reperfusion injury. The 

slides here show more typical AFOG staining with the RBCs appearing light yellow as expected 

(Mihatsch and Bremer, 1978). Myocardium in these stains appear light purple whereas healthy 

myocardium should appear light orange with damaged or injured myocardium appearing dark 

orange (Chablais et al., 2011). Basement membrane proteins under AFOG protocols should stain 

pale- or light-blue (Mihatsch and Bremer, 1978). When mixing primary colors, blue and orange 

(essentially a shade of red) can lead to a pale purple color, which may explain the pale purple 

staining seen here (Simonot and Hebert, 2014). Unfortunately, the pale purple staining of this 

region does not help identify the protein content of acellular material being deposited at the 

heart wall border. 

Thirty Days Status-Post Ischemia-Reperfusion Injury 

 Animals sacrificed thirty days after ischemia reperfusion injury all originated from the UK 

Ambystoma Genetic Stock Center (AGSC) and are young-to-normal adults (about three years of 

age at euthanasia). 

 Representative results of H&E staining in the ischemic region of damaged hearts are 

shown in Figure 61B for animals sacrificed thirty days after ischemia-reperfusion injury. Large 

areas of hemorrhage continue to persist in areas of ischemic damage, but the amount of 

hemorrhaging appears to be decreasing. This may indicate a decrease in the volume of injured 

tissue space or a return of normal sinus architecture to allow perfusion of trabeculated 

myocardium. The return of normal sinus architecture is less likely since undamaged myocardium 
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in remote areas of the heart flush clear of RBCs. Therefore, the RBCs that remain in tissues 

damaged by ischemia-reperfusion injury likely are trapped in hemorrhagic spaces. The thickening 

border wall shows an increasing presence of various cell types, including infiltrating WBCs such 

as eosinophils and basophils, more nascent cardiomyocytes (cells with elongated and pale-purple 

nuclei), possible myofibroblasts (cells with ovoid and pale-purple nuclei), and likely endocardium 

(plump rod-like cells that stain deep purple). Although the tissue is beginning to show more 

uniform, pale eosinophilic staining, rather than the deep eosinophilic staining of damaged 

myofibers in the acute setting, the healing tissue is highly disorganized with haphazard layering 

of infiltrating cells, connective tissue and connective tissue matrix. The protein exudate 

contributing to hyaline change is no longer present in the same concentration as previously noted 

in the more acute injury setting. 

 Representative results of Masson’s trichrome staining in the ischemic region of damaged 

hearts are shown in Figure 61C for animals sacrificed thirty days after ischemia-reperfusion 

injury. Few additional details are revealed with samples stained using this approach. There is 

some evidence of organized collagen in the heart border wall, but the single timepoint sample 

does not provide details if this is pre-existing or newly formed collagen. The disorganized tissue 

that is present at the apex is beginning to stain deep burgundy like undamaged myocardium in 

remote, healthy regions. 

 Representative results of AFOG staining in the ischemic region of damaged hearts are 

shown in Figure 61D for animals sacrificed thirty days after ischemia-reperfusion injury. Although 

H&E and Masson’s trichrome staining show that myocardium in areas of ischemia-reperfusion 

injury stain more uniformly like undamaged, remote myocardium, the AFOG staining shows clear 
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differences between the disorganized myocardium in area of ischemia-reperfusion injury (stains 

light purple) compared to healthy remote myocardium (stains light orange with nice thin layer of 

A)  

B)      

C)      

D)      
Figure 61: Representative Histologic Results of Axolotl Hearts Thirty Days After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Gross view 
of the injured heart showing area of injury with gross hemorrhage evident. B) Hematoxylin 
and eosin stain. C) Masson’s trichrome stain. D) Acid fuchsin orange G stain. Scale bar 
included. 
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connective tissue surrounding fibers). Areas of proteinaceous exudate staining light blue 

indicating basement membrane proteins are still present in border regions between remote 

healthy tissue and the inured myocardium, but are beginning to regress at the heart border wall 

of regions of ischemia. 

Sixty Days Status-Post Ischemia-Reperfusion Injury 

Animals sacrificed sixty days after ischemia reperfusion injury include animals sourced from UW 

that are from two different age stratifications: older adults (about eight to ten years of age at 

euthanasia) and young-to-normal adults (about three to five years of age at euthanasia). 

Additionally, animals from UK Ambystoma Genetic Stock Center (AGSC) were used to compare 

to the heart regeneration results in the acute setting of Specific Aim 1. Animals from UK are 

young-adults (about three years of age at euthanasia). 

 Representative results of H&E staining in the ischemic region of damaged hearts are 

shown in Figure 62B (older adults, UW), Figure 63B (young-to-normal adults, UW), and Figure 

64B (young adults, UK) for animals sacrificed sixty days after ischemia-reperfusion injury. 

Although all animals show evidence of new myocardium formation, when comparing the UW 

older-adults to the UW young-to-normal and UK young-adult animals, the much older UW 

animals do not show formation of myocardium. Instead, there continues to be disorganized 

formations of proteins with a brighter eosinophilic staining as compared to the younger animals 

that have areas of forming cardiomyocytes that stain very pale pink. The amount of 

hemorrhaging present near the heart border wall of the ischemic area are similar between the 

animals regardless of age and origin. The apical border continues to show increased cellularity 

with a mixture of infiltrating WBCs (such as basophils), possible myofibroblasts, and likely 
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endocardium. Additionally, the younger animals from UW and UK show nascent cardiomyocytes 

with the newly forming myocardium in areas of ischemia-reperfusion injury showing similar light-

pink staining as healthy, remote myocardium. Although the regenerating tissue appears different 

in the apical region when comparing older vs. younger animals, the border regions show similar 

pathology regardless of age. Regenerating at a slower rate, the border areas all show highly 

cellular tissue, regardless of age and animal origin. 

 Representative results of Masson’s trichrome staining in the ischemic region of damaged 

hearts are shown in Figure 62C (older adults, UW), Figure 63C (young-to-normal adults, UW), and 

Figure 64C (young adults, UK) for animals sacrificed sixty days after ischemia-reperfusion injury. 

Trichrome: At the apical border of the ischemia-reperfusion injury, the older adult animals from 

UW show ongoing presence of proteinaceous pockets whereas younger adult animals from UW 

and UK show remodeling of this same area with disorganized myofibers interspersed within 

fibrillar connective tissue that appears to be forming a supporting network. 

 Representative results of AFOG staining in the ischemic region of damaged hearts are 

shown in Figure 62D (older adults, UW), Figure 63D (young-to-normal adults, UW), and Figure 

64D (young adults, UK) for animals sacrificed sixty days after ischemia-reperfusion injury. The 

apical region of older adult animals from UW shows light purple staining of highly disorganized 

structures that resemble myofibers in areas of ischemia-reperfusion injury. On the other hand, 

the myocardium of young-old animals is more organized and show light-orange (properly formed 

/ undamaged myofibers. 
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A)  

B)      

C)      

D)      
Figure 62: Representative Histologic Results of Older-Adult Axolotl (UW) Hearts Sixty Days 
After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Gross view 
of the injured heart showing area of injury with gross hemorrhage evident. B) Hematoxylin 
and eosin stain. C) Masson’s trichrome stain. D) Acid fuchsin orange G stain. Scale bar 
included. 
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A)  

B)      

C)      

D)      
Figure 63: Representative Histologic Results of Adult Axolotl (UW) Hearts Sixty Days After 
Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Gross view 
of the injured heart showing area of injury with gross hemorrhage evident. B) Hematoxylin 
and eosin stain. C) Masson’s trichrome stain. D) Acid fuchsin orange G stain. Scale bar 
included. 
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A)  

B)      

C)      

D)      
Figure 64: Representative Histologic Results of Adult Axolotl (UK) Hearts Sixty Days After 
Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Gross view 
of the injured heart showing area of injury with gross hemorrhage evident. B) Hematoxylin 
and eosin stain. C) Masson’s trichrome stain. D) Acid fuchsin orange G stain. Scale bar 
included. 
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Ninety Days Status-Post Ischemia-Reperfusion Injury 

 Animals sacrificed ninety days after ischemia reperfusion injury include animals sourced 

from UW that are from two different age stratifications: older adults (about eight to ten years of 

age at euthanasia) and young-to-normal adults (about three to five years of age at euthanasia). 

Additionally, animals from UK Ambystoma Genetic Stock Center (AGSC) were used to compare 

to the heart regeneration results in the acute setting of Specific Aim 1. Animals from UK are 

young-adults (about three years of age at euthanasia). 

 Representative results of H&E staining in the ischemic region of damaged hearts are 

shown in Figure 65B (older adults, UW), Figure 66B (young-to-normal adults, UW), and Figure 

67B (young adults, UK) for animals sacrificed ninety days after ischemia-reperfusion injury. 

Although all animals show evidence of new myocardium formation, the animals from UW show 

myocardium that is more disorganized with evidence of ongoing hemorrhage. Although animals 

from UK have fewer RBCs entrapped in myocardial tissue spaces, hemorrhage is still present in 

border regions of most animals, with less blood present at the border region of younger animals 

from UW and UK. The apical heart border continues to show increased cellularity with a mixture 

of nascent and maturing myocardium and infiltrating WBCs such as basophils. Although 

myocardium is regenerating in all animals, the density and organization still does not match 

normal myocardium.  

 Representative results of Masson’s trichrome staining in the ischemic region of damaged 

hearts are shown in Figure 65C (older adults, UW), Figure 66C (young-to-normal adults, UW), and 

Figure 67C (young adults, UK) for animals sacrificed ninety days after ischemia-reperfusion injury. 

The UW animals show a developing network of connective tissue fibers in the ischemia-
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reperfusion injury at the apex whereas the UK animal shows a more organized connective tissue 

framework at the apical heart border with few fibers infiltrating the newly-forming myocardium. 

All animals show the presence of connective tissue deposits at the border between the area 

damaged by ischemia-reperfusion injury and remote healthy regions – in combination with the 

histology at the apical border, the UW animals show distribution of connective tissue fibers 

throughout the entire ischemia-reperfusion injury zone. 

A)  

B)      

C)      
Figure 65: Representative Histologic Results of Older-Adult Axolotl (UW) Hearts Ninety Days 
After Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Gross view 
of the injured heart showing area of injury with gross hemorrhage. B) Hematoxylin and eosin 
stain. C) Masson’s trichrome stain. No AFOG results are available. Scale bar included. 
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A)  

B)      

C)      

D)      
Figure 66: Representative Histologic Results of Adult Axolotl (UW) Hearts Ninety Days After 
Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Gross view 
of the injured heart showing area of injury with gross hemorrhage evident. B) Hematoxylin 
and eosin stain. C) Masson’s trichrome stain. D) Acid fuchsin orange G stain. Scale bar 
included. 
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A)  

B)      

C)      

D)      
Figure 67: Representative Histologic Results of Adult Axolotl (UK) Hearts Ninety Days After 
Injury 
All views on the left are at 20X zoom while views on the right are at 40X zoom. A) Gross view 
of the injured heart showing area of injury with gross hemorrhage evident. B) Hematoxylin 
and eosin stain. C) Masson’s trichrome stain. D) Acid fuchsin orange G stain. Scale bar 
included. 
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 Representative results of AFOG staining in the ischemic region of damaged hearts are 

shown in Figure 66D (young-to-normal adults, UW) and Figure 67D (young adults, UK) for animals 

sacrificed ninety days after ischemia-reperfusion injury. Results from the older adult from UW 

are not available. Myocardium of younger adult animals from UW is still less organized, but shows 

pale-orange staining (possible evidence of properly formed / undamaged myofibers) while one 

animal from the UK group shows very good remodeling (light-orange staining of myocardium) 

with increasing density and organization. To add further validity to the formation of new 

myocardium, AFOG staining of the apical portion of all UK animals that were followed for ninety 

days after surgery are shown in Figure 68. Given the light-orange staining, the seven animals that 

underwent the ischemia-reperfusion injury (see Figure 68 A-G) show the presence of newly 

forming myocardium. The single animal that underwent the sham procedure (all surgical steps 

performed, including exposing the heart in the pericardial cavity and suturing the pericardium 

closes, except mechanical clamping of the heart) is shown in Figure 68H. The myocardium of 

injured animals stain with the same intensity as the sham animal, while the sham animal exhibits 

no connective tissue infiltration within the parenchyma – the connective tissue in the sham heart 

is localized to the heart border wall. 
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Quantitative Assessments of Pathology 

 Based on the histology stains used in Specific Aim 1 and Specific Aim 2, features defined 

by the dyes were chosen for quantitative assessment. From H&E stains, hyaline change feature 

of interest; from Masson’s Trichrome stains, connective tissue appearing as fibers is most likely 

A)  B)  

C)  D)  

E)   F)  

G)  H)  
Figure 68: AFOG Staining at Heart Apex for all UK Animals Sacrificed Ninety Days After 
Ischemia-Reperfusion Surgery 
A-G) Animals undergoing I/R procedure. H) Animal that underwent sham procedure. 
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collagen and is a feature of interest; and from AFOG stains, fibrin is the unique feature protein 

that is differentiated by this stain and is the feature of interest. For cells, the lack of cross-reacting 

antibodies makes it difficult to identify certain cells like cardiomyocytes and lymphocytes that 

take on different appearances under stress (e.g. cardiomyocytes) or cannot be differentiated 

within a class on appearance alone (e.g. lymphocytes). However, granulocytes that stain with a 

unique appearance and with highly contrasting colors compared to surrounding tissue can easily 

be identified by their gross appearance. Thus, quantitative cell counts in this section focus on 

granulocytes and erythrocytes (also easily identifiable in normal and stressed tissues). 

 Data about hyaline exudate, studied in animals from UK in Specific Aim 1, can now be 

extended using results from animals sacrificed thirty, sixty, and ninety days after ischemia-

reperfusion injury. Additionally, upon further review of chronic follow-up data, the amount of 

collagen and fibrin over time in the regenerating axolotl heart is of interest. The following data 

are computed using Fiji with similar histology field sampling schemes (ten fields per animal, see 

Figure 54B) as performed in Specific Aim 1. The color thresholding HSB values for H&E stains to 

identify areas of hyaline are shown in Figure 54A for injured tissues. Changes to the HSV values 

were required to highlight areas of hyaline in samples with very low background of hyaline or 

samples of naïve or sham animals. Without adjusting “hue” from 210 as used in Specific Aim 1 to 

230, Fiji highlighted large areas of myocardium instead of hyaline. HSB thresholding values for 

collagen (Figure 69B) and fibrin (Figure 69C) were tested on known naïve and injured sections 

and were used in blinded sections without modifications based on appearance of tissue. 
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 Following the animal welfare experiments in Specific Aim 1, all animals in Specific Aim 2 

were treated with butorphanol at 0.75 mg per liter of tank water (labeled as “high-dose” in 

Specific Aim 1). To compare animals from the same source (UK) that received the same animal 

husbandry and post-surgical care between the acute (Specific Aim 1) and chronic (Specific Aim 2) 

follow-up studies, only high-dose animals were used in the quantitative comparisons presented 

here, resulting in a sample size of four animals (n = 4) per group (only four animals per group, 

maximum, were used in Specific Aim 1). However, the ten inspected views for each heart used in 

the following results were chosen at random in the sampling field (i.e. mouse cursor was clicked 

in a thumbnail figure in the area defined in the sampling scheme without further 

A)  B)  C)  
Figure 69: Image Analysis Settings for Low-Background Hyaline, Collagen, and Fibrin 
The values shown here were used to threshold loaded image files in Fiji into: A) Areas 
corresponding to hyaline change in H&E histology stains of animals with low background of 
hyaline change or sham animals with no hyaline change present. B) Areas corresponding to 
light-green to light blue collagen in Masson’s trichrome stain. C) Areas corresponding to 
bright-red areas of fibrin in AFOG stains. 
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panning/localizing the field of view once the appropriate zoom was chosen) and the animal IDs 

were blinded (by friend of the author) to the user performing the analysis (the author). For red 

blood cell and granulocyte counts, each field was assessed by the author and cells were counted 

by hand. For granulocytes, eosinophilic and basophilic cells were grouped and counted, including 

neutrophil, heterophil, eosinophil, and basophils (see Figure 59) 

 The evolution of hyaline change, collagen formation, and fibrin over time is shown in 

Figure 70A, Figure 71A, and Figure 73A, respectively. The mean for each animal is depicted by 

the data point and the standard error of the mean from the ten fields used to determine the 

mean for each animal is denoted by the error bars. Error bars that are not visible are hidden by 

the data point (i.e. very small standard error of the mean). Results of threshold calculations for 

samples taken over time using one-way ANOVA (GraphPad Prism, Version 7.04) with follow-up 

multiple comparison tests compared to control and corrected by Dunnett’s test are shown in 

A) B)  
Figure 70: Evolution of Hyaline Change Over Time Following Ischemia-Reperfusion Injury 
A) Means for each individual animal are depicted by a data point – error bars are standard 
error of the mean for each individual animal (calculated from ten separate measurements). B) 
One-way ANOVA results comparing sample to control groups. p-values: * < 0.05, ** < 0.01, 
*** < 0.001, **** < 0.0001  
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Figure 70B, Figure 71B, and Figure 73B for hyaline change, collagen formation, and fibrin 

respectively. 

 The quantitative results of hyaline change agree with the qualitative observations. At all 

points except at ninety days after ischemia-reperfusion injury, the amount of hyaline change 

present is significantly different than control. After ninety days of repair and regeneration, the 

amount of hyaline has regressed and is no longer different than control, supported by the fact 

that new myocardium (see Figure 68) is present in greater quantities in the previously-damaged 

area of ischemia-reperfusion injury. 

 Based on the results of Figure 71B and Figure 73B, there are no clears trend of the 

evolution of collagen and fibrin deposition or formation over time in healing axolotl cardiac tissue 

after ischemia-reperfusion injury. The results do not support the qualitative observations -  

collagen deposition or formation is not supported by picrosirius, Masson’s trichrome, or AFOG 

staining and no fibrin is evident as shown in the representative slides of injured axolotl cardiac 

A)  B)  
Figure 71: Evolution of Collagen Over Time Following Ischemia-Reperfusion Injury 
A) Means for each individual animal are depicted by a data point – error bars are standard 
error of the mean for each individual animal (calculated from ten separate measurements). 
B) One-way ANOVA results comparing sample to control groups. p-values: * < 0.05, ** < 0.01, 
*** < 0.001, **** < 0.0001  
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tissue. Additional validation of pixel HSB values to known control samples is warranted to extend 

any quantitative claims about collagen and fibrin behavior over time in the regenerating axolotl 

heart after ischemia-reperfusion injury. 

A) B)  
Figure 72: Presence of RBCs Over Time Following Ischemia-Reperfusion Injury 
A) Means for each individual animal are depicted by a data point – error bars are standard 
error of the mean for each individual animal (calculated from ten separate measurements). 
B) One-way ANOVA results comparing sample to control groups. p-values: * < 0.05, ** < 0.01, 
*** < 0.001, **** < 0.0001  

A) B)  
Figure 73: Evolution of Fibrin Over Time Following Ischemia-Reperfusion Injury 
A) Means for each individual animal are depicted by a data point – error bars are standard 
error of the mean for each individual animal (calculated from ten separate measurements). 
B) One-way ANOVA results comparing sample to control groups. p-values: * < 0.05, ** < 0.01, 
*** < 0.001, **** < 0.0001  
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 The results of manually counting erythrocytes and granulocytes are shown in Figure 72 

and Figure 74, respectively. The one-way ANOVA results comparing the amounts of RBCs at 

specific time points after ischemia-reperfusion injury to control confirm the observations noted 

in the qualitative assessments – massive hemorrhaging evident on gross heart observation and 

histologically into areas of injured myocardium are observable in animals through thirty days of 

follow-up. For animals sacrificed sixty- to ninety-days after ischemia-reperfusion injury, very few 

RBCs remain in and around the regenerating tissue. With respect to granulocytes, their presence 

is statistically different compared to control animals at all points after ischemia-reperfusion injury 

except for one-half day after the procedure. Although no granulocytes are evident one-half day 

after surgery, other acute-phase inflammatory lymphocytes are present. 

Overall Spatiotemporal Histology Trend 

 The results presented here provide evidence that the adult axolotl can regenerate a 

cardiac ischemia-reperfusion injury. Unlike the results of the partial ventricular amputation study 

A) B)  
Figure 74: Presence of Granulocytes Over Time Following Ischemia-Reperfusion Injury 
A) Means for each individual animal are depicted by a data point – error bars are standard 
error of the mean for each individual animal (calculated from ten separate measurements). 
B) One-way ANOVA results comparing sample to control groups. p-values: * < 0.05, ** < 0.01, 
*** < 0.001, **** < 0.0001 
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in axolotls (Cano-Martinez et al., 2010), complete regeneration has not been achieved by ninety 

days of follow-up. After ninety days following an ischemia-reperfusion injury to the axolotl heart, 

new myocardium is forming, but it is less organized with connective tissue infiltrating around the 

nascent myofibers. The delay in healing a more serious tissue injury parallels studies in zebrafish: 

apical resection studies completely heal in about sixty days whereas cryoinjury studies take about 

one-hundred thirty days to perfectly remodel in the zebrafish (Choi and Poss, 2012). The 

expectation here is that complete axolotl heart regeneration will take greater than ninety days 

to return cardiac tissue injured by an ischemia-reperfusion event to its pre-injury state. 

Heart Function Over Time Following Ischemia-Reperfusion Injury 

 For each follow-up scan (e.g. twenty-eight-day scan), an animal was appropriately 

anesthetized and scanned immediately when a light- to deep-plane of anesthesia was achieved. 

The linear ultrasound transducer was placed directly on the animal’s skin and oriented using two 

landmarks (one-way valve leading to bulbus cordis outflow tract and attachment of ligamentum 

mesocardium to dorsal surface of pericardial cavity). Once properly oriented, a five-hundred 

frame capture was executed in the MATLAB® script. The transducer was then moved away from 

the animal’s skin and repositioned for additional scans. Three to five scans were performed and 

recorded per animal on each scheduled day for follow-up imaging. 

 After extracting all five-hundred image files from each output video, each frame was 

viewed to find the extents of systole and diastole for one heartbeat. Once a set of frames were 

identified, another cardiac cycle three to four seconds away (about one hundred frames between 

individual FAC calculations) was viewed to evaluate a different heartbeat. A total of three 

separate heartbeats were evaluated per video and anywhere from three to five trials were 
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assessed per animal per scheduled scan day. Many of the calculated FAC values were in close 

agreement (e.g. less than 10% absolute difference between minimum and maximum values 

calculated). However, if one of three FAC calculations is more than ten percent different from 

the other two calculated values (i.e. because of slight animal movement or transducer position 

drift), additional sets of sequential systolic and diastolic images of a continuous heartbeat were 

evaluated and replaced any outlying values. To calculate the FAC values reported here, all long-

term animals with fifty-six to ninety days of follow-up scans were used (n = 8 to 16 animals, see 

Figure 70). For the data on the twenty-eight-day scan follow-up, the Verasonics ultrasound 

machine was in use by another PI, so only eight (n = 8) animals were scanned for that data set. 

 A publication using cryoinjury to injure axolotl hearts and a production Vevo 2100 

ultrasound machine (FUJIFILM/VisualSonics Inc., Canada) designed for small animal ultrasound 

to measure the fractional area change (FAC) in axolotl hearts report similar results. At baseline, 

Godwin et al. report a baseline FAC of about 45%, with an upper limit 95% confidence interval 

level around 50% (the lower 95% confidence interval limit is not provided), with a drop in FAC to 

about 28% (with an upper limit 95% confidence interval of about 32%) fourteen days after 

cryoinjury. At forty-five days of follow-up, injured hearts returned to baseline function (Godwin 

et al., 2017b). Results of fractional area change over time in this study over time are shown in 

Figure 75. Comparing the raw FAC values in Figure 75C to the figures from Godwin et al., the 

approach used in this study, an in-house image-analysis algorithm including manually defining 

the regions of interest (axolotl hearts in diastole and systole) produces results that agree with 

the values determined using the commercial system with built-in LV-trace algorithm. Control 

animals in this study had baseline FAC of 40.08% (35.62% - 44.54% for 95% confidence interval) 
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and FAC at fourteen days after injury of 30.05% (33.41% - 26.69% for 95% confidence interval), 

values consistent with Godwin et al. 

 Considering only the animals in this study, when comparing the ischemia-reperfusion 

results to controls, there is a statistically significant difference between animals at fourteen and 

fifty-six days of follow-up after ischemia-reperfusion injury, matching the acute drop in function 
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B)  C)  
Figure 75: Fractional Area Change Over Time Following Ischemia-Reperfusion Injury 
A) Means for each individual animal are depicted by a data point – error bars are standard 
error of the mean for each individual animal. B) One-way ANOVA results comparing sample 
to control groups. p-values: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001  
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noted by Godwin et al. Although the mean at twenty-eight days after injury (33.16%; 30.82% -  

35.49% for 95% confidence interval) is close to the mean at fifty-six days after injury (33.06%, 

30.88% -  35.24% for 95% confidence interval), the smaller amount of data (ultrasound machine 

was not available) does not allow for significance to be calculated. Supporting the tenet that 

ischemia-reperfusion injury is a more serious cardiac injury modality, cardiac function does not 

return to baseline until ninety days after surgery with a mean of 34.72% (31.38% - 38.05% for 

95% confidence interval). According to Godwin et al., the axolotl heart injured by cryoinjury 

returns to baseline function after forty-five days following surgery. 
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CHAPTER 7: DISCUSSION 

Specific Aim 1 

Development of Ischemia-Reperfusion Model in the Axolotl 

 After being subjected to various types of injuries of differing severity, published 

experiments studying non-mammalian vertebrates have shown that hearts of animals of various 

developmental stages can fully regenerate and rescue cardiac function through epimorphic or 

epimorphic-like repair processes (Choi and Poss, 2012; Roy and Gatien, 2008). However, as 

outlined the section “Cardiac Injury Models”, the molecular signaling pathways involved in 

cryoinjury, conditional genetic ablation, or apical resection do not recapitulate the events in an 

ischemia-reperfusion event. Therefore, the cardiac regeneration field still does not have direct 

evidence that an adult vertebrate animal can regenerate a cardiac ischemia-reperfusion injury. 

 Lacking coronary arteries and while having a trabeculated ventricle, inducing an ischemia-

reperfusion injury must take an entirely different approach than a coronary artery ligation. After 

searching for the correct tool that can induce a mechanically-induced injury in the murine and 

axolotl heart, the work here has shown that the pathophysiology following a myocardial 

infarction in the mouse is recapitulated using mechanical compression of the mouse heart, and 

can be replicated in the axolotl heart. The only difference between the two model systems is the 

time to induce sufficient ischemia to ensure irreversible cardiac muscle injury. In mammals, 

twenty to thirty minutes is sufficient to induce transmural (ST-elevation myocardial infarction, or 

STEMI) cardiac damage. In the axolotl, it was found that one-hundred and twenty minutes of 

induced ischemia is sufficient to repeatably produce an ischemia-reperfusion injury. In short, one 
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of the main outcomes of Specific Aim 1 is the development of a method to induce a heart attack 

in axolotls. 

Ensuring Axolotl Welfare when Using Ischemia-Reperfusion Model 

 Previous studies in frogs (Rana pipiens and Xenopus laevis) have described mechanical 

(manual von Frey [vF] aesthesiometers), thermal (light energy), and chemical (acetic acid test 

[AAT]) methods to assess pain and analgesic efficacy in a quantitative manner (Willenbring and 

Stevens, 1996), which require modifications to produce repeatable results in axolotls. The work 

presented here evaluated vF and AAT quantitative assessments to determine the repeatability 

and reproducibility of the two quantitative tests and determine which is a better tool to use to 

quantify pain in the axolotl. 

 While there are several demonstrated differences in pain responses between frogs, 

newts, and salamanders, it has been shown that A- and C-nociceptive fibers are present in most 

vertebrate animals, including amphibians (Coble et al., 2011; Hamamoto and Simone, 2003; 

Sneddon, 2014). Although axolotls are classified in a different family and order from newts and 

frogs respectively, it is expected that pain receptors are likely conserved within the class. 

However, nociceptor fiber distribution and number may vary (Sneddon, 2014). Spinothalamic 

projections (via a brainstem-thalamus tract) conveying cutaneous sensory information to the 

thalamus are not well understood in amphibians, but are known to exist (Northcutt, 1984; 

Stevens, 2004). Additionally, thalamocortical projections that convey sensory signals to the 

telencephalon are poorly organized and only contain scant numbers of fibers in amphibians 

(Stevens, 2004). The neuroanatomy of frogs (Vesselkin et al., 1971) suggests the transmission of 

noxious stimuli (nociception) and the processing of the sensory information (pain) is poorly 
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represented in amphibians and that most central nervous system (CNS) pathways are related to 

spinal (does not ascend to brain) and long-loop (does ascend to brain) reflexes to the brain stem 

and thalamus (Koeller, 2009). Nevertheless, the presence of sensory projections to the brains of 

amphibians suggests these animals perceive pain and that appropriate analgesics should be used 

whenever performing experiments that can cause pain. 

 Comparing AAT versus vF as quantitative tools to assess pain in amphibians, the present 

findings are in direct contrast to the reproducibility and repeatability of these same methods 

when used in frogs. Willenbring and Stevens (Willenbring and Stevens, 1996) found vF had less 

individual variation than AAT when assessing pain thresholds in Rana pipiens. This difference in 

measurement variation may be due to species differences and/or dissimilarities in experimental 

methods. With respect to species differences, there may be dissimilar distributions of cutaneous 

mechanoreceptors of the lateral line system in each animal or variations of sensory-

discriminative pathways between frogs and axolotls. The experimental setups used also differ 

between the frog study and the experiments presented here. At least two days before testing, 

the frogs in the Willenbring and Stevens study were transferred from their home environment to 

individual plastic cages with 2 cm of water covering the cage bottom (reduced to 0.5 cm on the 

day of test), clearly leaving the frog’s hindlimb exposed for probing and testing. In contrast, to 

minimize extraneous non-noxious stimuli or environmental cues that might prime a response like 

restraining the animal or allowing the animals to see the test devices, the aesthesiometers 

probed the animals or acetic acid was placed on them while the axolotls were in a quiescent and 

restful state in their home or test cage, submerged in 6 – 8 cm of water with their dorsal surface 

briefly exposed only for testing. Additionally, to prevent a coached response, probes or pipettes 
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were brought towards the animal from the caudal body aspect, preventing the animal from 

seeing the device’s approach. Although using these precautions, unlike results in frogs 

(Willenbring and Stevens, 1996), the vF shows more measurement variation compared to the 

AAT. 

 Multiple factors contribute to the difficulty in translating the vF to the axolotl. Although 

care is taken such that the flexible fiber is placed perpendicular to the site of evaluation before 

the force is applied, the shape of the animal (curved body lateral to dorsal fin) and the presence 

of its natural mucous coating sometimes make it difficult to consistently apply the evaluator 

perpendicular to the animal’s skin. Conversely, using an adjustable-volume pipettor, a small-

caliber pipette tip, and a very small volume of acetic acid allows for the more precise application 

of this noxious stimulus. Furthermore, after a simple solution (i.e. cage tilting) was developed to 

keep the animal predominantly submerged while only exposing the dorsal surface just for the 

few seconds to apply the acetic acid, it was found that the AAT is an easier test to perform. 

Although noxious stimuli like the acetic acid test are transmitted along unmyelinated C fibers and 

thinly myelinated Aδ fibers while non-noxious stimuli like mechanical sensation activate rapidly 

conducting Aβ-like fibers (Willenbring and Stevens, 1996), which can account for variation 

between species, the human factors necessary to perform the tests and experimental setups 

must not be ignored when assessing a measurement tool’s usefulness. The results of the two 

different quantitative approaches to measure pain in axolotls show that an adapted AAT is more 

repeatable and reproducible in causing a noxious stimulus in this model animal versus the non-

noxious stimuli using the manual vF fibers. 
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 After adopting the acetic acid test to work in axolotls, mixed partial opioid-receptor 

agonist-antagonist antinociceptives were tested to determine if they provide antinociception in 

these animals. Although studies caution the application of doses across unrelated species in the 

same class (e.g. Amphibia) (Farkas and Monaghan, 2015), without guidance on doses and route 

of application, buprenorphine (intracoelomic injection) and butorphanol (immersion) were used 

in the same doses and routes as published in the eastern red-spotted newt (Koeller, 2009). Using 

the doses in newts (buprenorphine: 50 mg/kg injection; butorphanol: 5 mg/L home cage water) 

versus control animals, no significant difference exists in response to acetic acid testing. Two 

animals in the buprenorphine arm also showed signs of adverse effects (constipation – no feces 

detected for two weeks after treatment) and had to be euthanized, removing buprenorphine 

from further use in this study. Although TUNEL staining is strong near the rectum, suggesting 

greater DNA damage, H&E results do not indicate any pathology in this area. However, the TUNEL 

staining results could be due to increased GI epithelial turnover. The only clear clinical 

observation is that the fecal output was reduced. This finding could be caused by the primary 

effect of opioids causing reduced GI motility or a local reaction to the intracoelomic injection of 

this buprenorphine formulation and concentration.Increasing the butorphanol dose by 50% to 

0.75 mg/L of home cage water also did not show any significant differences in response to acetic 

acid testing versus control animals. Although these results suggest that butorphanol, using this 

route of administration and tested doses, does not provide antinociceptive effects for somatic 

pain, testing moved forward to see if butorphanol played a role in suppressing visceral pain, by 

comparing the response to noxious somatic stimuli after invasive cardiac surgery. 
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 Following the application of a novel model of cardiac ischemia-reperfusion injury, axolotls 

were again subjected to the acetic acid test. Examining the results of the three treatment arms 

(mid-dose butorphanol, high-dose butorphanol, and control) no significant difference exists in 

response to acetic acid testing. Although this suggests that the doses of butorphanol did not have 

any effect on reducing stress, pain, or pain-induced stress, no adverse effects were seen in 37 

animals that were treated with mid-dose (n = 19) and high-dose butorphanol (n = 18). Additional 

dose-response experiments are warranted to explore the required dosing for antinociception in 

axolotls. To determine if opioid use in studies for regeneration in axolotls do not confound tissue 

response, additional histology studies were completed. 

 After noxious stimulus testing, heart samples were collected to determine if butorphanol 

affects tissue regeneration through the modulation of immune function or direct 

cardioprotection through μ-opioid receptor stimulation. Samples were evaluated in a blinded 

manner by a veterinary pathologist (BHR) with training and experience in evaluating amphibian 

tissue histology and pathology. After performing a first-pass view of all samples, creating a 

scoring rubric, and then reassessing all samples against the scoring rubric, four features stood 

out as meaningful pathologic features for comparison: cellular proliferation scored by BrdU 

uptake, cellular death scored by TUNEL staining, and extent of inflammation scored by leukocyte 

(lymphocyte and heterophil) infiltration. Examining the results of the three treatment arms (mid-

dose butorphanol, high-dose butorphanol, and control) no significant difference exists when 

evaluating the four histopathologic features, suggesting the doses of butorphanol administered 

to the animals do not have a dose-dependent or time-based (within 7-days) effect on tissue 

response after injury. 
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 In summary, the work in this Specific Aim provides guidelines for future studies of tissue 

regeneration in the axolotl, and specifically, when combined with the model development in this 

Specific Aim, studies of cardiac tissue regeneration. By evaluating methods to assess pain, 

studying the use of opioids as antinociceptives, and applying these results to invasive surgical 

procedure in axolotls, investigators now have additional tools in their toolkit to ensure animal 

welfare while minimizing factors that can confound tissue responses after injury. 

Specific Aim 2 

Cardiac Regeneration After Ischemia-Reperfusion Injury 

 As previously mentioned, the cardiac regeneration field still does not have direct evidence 

that an adult vertebrate animal can use epimorphic or epimorphic-like processes to heal the 

heart after ischemia-reperfusion injury. Other cardiac injury surrogates have been used, all with 

differing severity and molecular signaling pathways that mediate injury, and shown to result in 

complete regeneration of the injured heart. However, these surrogates do not recapitulate an 

ischemia-reperfusion injury. Therefore, until now, the cardiac regeneration field has not been 

provided direct evidence that an adult vertebrate animal can regenerate a cardiac ischemia-

reperfusion injury. 

 The evidence presented in this body of work is, to the author’s knowledge, the first 

evidence that an adult vertebrate animal, the axolotl, can regenerate its heart after sustaining an 

ischemia-reperfusion event using a methodology (mechanically-induced ischemia) that produces 

the same pathophysiology of a myocardial infarction in mammals (i.e. coronary artery ligation). 

Histologic sections with qualitative and quantitative assessments, show a unique spatiotemporal 

evolution of the regenerating heart in the axolotl, creating just as many questions as answers to 
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how the axolotl mediates regeneration. Heart function is also seen to return as the reduction in 

fractional area change fourteen days following injury slowly returns to baseline by ninety days 

after injury. The interesting histology results require development of further 

immunohistochemical tools or next-generation sequencing and omics to help identify the 

constituents that may be involved in regenerating the axolotl heart. For now, the conclusion by 

Roy and Gatien from 2008 still hold (emphasis theirs): “One of the most frequent answers 

provided by experts in the field of epimorphic regeneration working on urodele amphibians 

during the question period following their presentations is: unfortunately the answer to that 

question is unknown since no-one has yet looked at that pathway or tested that hypothesis.” 

Given the results of this body of work, hypotheses can be formed to drive future research 

directions. 

Conclusions 

 Diseases of the heart, especially Ischemic heart disease, are the number one cause of 

death in the US and worldwide (Murphy et al., 2017; Organization, 2017; Xu et al., 2016). In adult 

patients that survive acute ischemic events, especially life-threatening conditions in the acute 

coronary syndrome spectrum, any areas of cardiac muscle that die from ischemia are repaired 

by connective tissue deposition (Robbins et al., 2010) rather than replacement with new 

cardiomyocytes. Because of severe sequelae that results from the replacement of functional 

cardiac muscle by inert, but structural connective tissue, most therapy for patients that survive 

to have chronic ischemic heart disease are treated mostly with supportive-care measures to 

reduce the oxygen needed by the heart, reduce the chance of deadly arrhythmias, prevent 

further arteriosclerosis development, and avoiding the formation of mural thromboses in the 
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heart that can lead to additional cardiovascular events (Lilly, 2011). With the only treatment 

option to return normal heart function only met by heart transplant, many researchers in the 

field have turned to stem cells and cell-based therapy as an approach to remodel hearts damaged 

by ischemia-reperfusion injuries. 

 With almost two decades of research using stem cells in human patients, the multiple 

clinical trials have had mixed results, from no significant change to slight improvements to left 

ventricle function (Nguyen et al., 2016). Cell-based therapy has not been the panacea many were 

hoping for, giving the field of cardiac regeneration the opportunity to pivot to new directions. 

While research on cell-based therapies on diseases of the heart continue, exploring other 

pathways of achieving heart remodeling after ischemia-reperfusion must be pursued. The 

motivation of this body of work was to study if an adult vertebrate animal known to heal injuries 

through epimorphic regeneration can rescue a heart damaged by an ischemia-reperfusion injury. 

From the question, the following hypothesis is formed: 

The axolotl, an animal capable of healing damaged organs and limbs throughout 

its lifespan through the process of epimorphic regeneration, can regenerate a 

cardiac ischemia-reperfusion injury as an adult. 

Providing evidence to retain or reject this hypothesis provides two important answers to the field 

of regenerative medicine in cardiology: 1) “Is there something fundamental about the ischemia-

reperfusion injury that prevents damaged cardiac tissue from being repaired by replacing dead 

tissue with new, healthy myocardium?”, and 2) “If a vertebrate animal can rescue myocardium 

damaged by an ischemia-reperfusion injury, how does it mediate this response?”. 
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 Spatiotemporal histopathology results of the healing axolotl heart following ischemia-

reperfusion injury provides evidence that adult vertebrate animals can regenerate damaged 

cardiac tissue without therapeutic interventions. However, complete regeneration of this serious 

injury requires more time than other injury modalities like apical resection, ventricular 

amputation, cardiac genetic ablation, or cryoinjury. To the author’s knowledge, this is the first 

evidence of cardiac tissue regeneration in an adult vertebrate animal that is achieved without 

any therapeutic interventions. The evidence presented here concludes that there is nothing 

unique about an ischemia-reperfusion event in cardiac tissue – it can be repaired with new, 

healthy myocardium. However, due to limitations of antibodies that cross-react with axolotl 

proteins, the exact mechanism or mechanisms behind the regeneration of injured myocardium 

still needs to be elucidated. In place of a known mechanism, three working hypotheses on how 

cardiac tissue regeneration is mediated in the axolotl are informed from qualitative and 

quantitative data presented in this body of work. 

Mechanisms of Regeneration: Hypotheses 

 With the evidence presented in this body of work, the following hypotheses are presented 

to outline additional opportunities for further study: 

• The cardiac regeneration process differs from processes observed in 

zebrafish. Of note, instead of fibrin playing a role in the spatiotemporal 

regeneration in zebrafish, unknown eosinophilic protein(s) are present in 

the regenerating axolotl heart for thirty to sixty days following ischemia-

reperfusion injury, possibly mediating repair. 
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• Nucleated RBCs are abundantly present in the wound area about thirty to 

sixty days post injury. These nucleated RBCs do not look like normal, 

smoothly shaped RBCs in naïve hearts. The jagged appearance may 

possibly indicate activated or stressed RBCs that may be more 

metabolically active, secreting small molecules or other paracrine signals 

and playing a proactive role in mediating tissue repair. 

• Structural changes such as wavy fibers, contraction bands/coagulative 

necrosis, and hyaline change may distribute loading throughout the heart, 

stabilizing the injury, maintaining cardiac output, and mediating repair. 

Biomechanical unloading has been seen to play a role in reverse 

remodeling in human patients with heart failure – long-standing left 

ventricular assist device (LVAD) use has been shown to assist in reversing 

adverse remodeling in heart failure patients (Ambardekar and Buttrick, 

2011) 

 Beyond creating a model of ischemia-reperfusion injury in the axolotl, the results 

presented here provide a platform to study proteins or other small molecules, paracrine signaling 

mechanisms, and biomechanical forces that play a role in axolotl heart regeneration after an 

ischemia-reperfusion event that can be translated to other animal models, first to rodents, then 

to pigs, and ultimately to human patients. The evidence of heart regeneration in an adult 

vertebrate animal following an ischemia-reperfusion event provides additional opportunities to 

tease out cardiomyocyte biology and can even bolster the current understandings of cell-base 

therapy approaches to make them more effective. 
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Future Research Directions 

 Ninety days following apical resection in the axolotl, the heart was completely 

regenerated after injury (Cano-Martinez et al., 2010). After developing a reproducible method to 

induce a true ischemia-reperfusion injury in the axolotl, cardiac tissue regeneration is evident 

ninety days after injury, but the regenerating myocardium is not fully organized and is infiltrated 

by connective tissue. Interestingly, unknown eosinophilic proteins in the hyaline change 

spectrum and red blood cells persist in the regenerating tissue structures, possibly mediating 

repair. Future studies should follow cardiac function through cardiac ultrasound, gross tissue 

inspection, and light-microscopy with histological staining, immunohistochemistry and electron 

microscopy for longer periods of time after injury. Some cryoinjury studies in zebrafish report 

complete regeneration one-hundred thirty days post injury (Gonzalez-Rosa et al., 2011) while a 

cautery injury model in the giant danio (Danio aequipinnatus) returned to non-injured 

morphology after one-hundred eighty days post injury (Lafontant et al., 2012). These results 

should guide future long-term studies post ischemia-reperfusion injury in the axolotl. 

 As the knowledge base develops from Specific Aims 1 and 2, the regions of the 

regenerating cardiac tissue should be carefully sampled and studied through RNA-sequencing 

approaches to elucidate the signaling mechanisms involved in axolotl cardiac regeneration 

following an ischemic injury. These activities should then be followed-up with proteomic analysis 

to determine what proteins eventually form and play a role in mediating cardiac repair in the 

axolotl following an ischemia-reperfusion injury in the heart. Additionally, antibodies that cross-

react with axolotl proteins must be developed to help identify proteins that are not differentiated 

by simple histology staining. 
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APPENDIX A: PILOT STUDIES AND SUPPLEMENTARY INFORMATION 

Quantitative Pain Assessments 

 Although bacteria can sense life threatening mechanical forces, is not until the evolution 

of the basic nervous system of the phyla Cnidaria and Ctenophora that we can find evidence of 

nociceptors. From these simple aquatic phyla, nociceptors have evolved throughout the animal 

kingdom to diversify into different classes in vertebrates that can detect multiple types of stimuli 

(Smith and Lewin, 2009). Noxious thermal, mechanical, and chemical stimuli testing in 

amphibians, and the increased latency to respond after the administration of morphine 

(Willenbring and Stevens, 1996) suggests that, as in mammals, an endogenous opioid system is 

present. From this evidence, and further characterization of cutaneous nociceptors, amphibians 

sense noxious thermal, mechanical, and chemical stimuli through Aδ-nociceptors and polymodal 

C-fiber nociceptors, the same signaling pathways as those found in mammals. Various 

quantitative testing methods have been developed to measure pain in laboratory animals. Two 

approaches used in previous amphibian testing (Willenbring and Stevens, 1996) were piloted for 

use in axolotls for this study. 

Mechanical Stimulation with von Frey (vF) Filaments: 

 For these tests, axolotls are kept in their home polypropylene rat cage. Using manual von 

Frey [vF] aesthesiometers (Touch Test Sensory Evaluator, Stoelting, Wood Dale, IL), increasing 

force is applied at the site of evaluation (lateral to dorsal fin, in line with forelimb) until 

nociceptive behavior is observed at which point the applied force is recorded. Care is taken such 

that the flexible fiber is placed perpendicular to the site of evaluation before the force is applied. 

Additionally, the manual aesthesiometers are brought in from a caudal direction preventing the 

animal from visually detect the approaching stimulus. 

 The probes are supplied in force increments that are not linear. The following data 

(Evaluator marking and Force) in Supplementary Table 1 describe the manual vF probes used in 

this study: 

 

 



www.manaraa.com

200 

 

Supplementary Table 1: Characteristics of von Frey Evaluators 

Evaluator Marking 1.65 2.36 2.44 2.83 3.22 3.61 3.84 4.08 

Force (Grams) 0.008 0.02 0.04 0.07 0.16 0.4 0.6 1 

Evaluator Code 0 1 2 3 4 5 6 7 

         

Evaluator Marking 4.17 4.31 4.56 4.74 4.93 5.07 5.18  

Force (Grams) 1.4 2 4 6 8 10 15  

Evaluator Code 8 9 10 11 12 13 14  

To make appropriate comparisons about the repeatability of von Frey aesthesiometers, the 

evaluators were mapped to an ordinal scale that includes 0. The smallest gauge filament (0.008 

g of force) was defined as the scale’s zero point as it would bend when touching the water surface 

due to surface tension (e.g. cohesive forces between liquid molecules at the liquid-air interface). 

The evaluator codes listed were used in the statistical analysis of data. 

Chemical Stimulation with Acetic Acid Test (AAT): 

 For these tests, axolotls are placed in a smaller polypropylene mouse cage with enough 

50% Holtfreter’s solution to cover half of its body, leaving the dorsal surface above the waterline. 

The AAT is performed according to previously published reports in frogs(Willenbring and Stevens, 

1996). Glacial acetic acid is serially diluted to produce 15 dilutions evenly spaced on a logarithmic 

scale. Testing starts with a negative control, a single drop (20 μL) of 50% Holtfreter’s solution, to 

ensure the animal does not respond simply due to the mechanical stimulation of the water 

droplet. Testing proceeds by placing a single drop (20 μL) of the weakest concentration acetic 

acid lateral to dorsal fin, in line with hindlimb. The animal will be observed for a repeatable 

behavioral response (wiping, turning, escape behavior). If a response is not observed within 5 

seconds, the area is rinsed using 50% Holtfreter’s solution. Testing on the opposite side using the 

next highest concentration will occur. The testing continues, alternating sides, until the 

nociceptive threshold is reached which is the lowest concentration to produce a response. Once 

a response is observed, a subsequent test is performed with the next highest concentration on 

the alternate side. If the alternate side shows a positive response, the previous dose is recorded 

as the threshold. If no response is recorded on this alternate side, testing continues as described 

above. This approach ensures that the lowest dose is captured since there may be differences 

between the left and right sides of the animal. In between tests, the polypropylene mouse cage 
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is tilted to one side using a wedge to increase the perceived level of water by the animal, allowing 

the animal to be fully submerged, reducing the stress of being partially exposed during the AAT. 

 To make appropriate comparisons about the repeatability of the acetic acid test, the 

logarithmic concentrations were mapped to an ordinal scale that includes 0. The weakest 

concentration of diluted acetic acid (0.03 M) was defined as the scale’s zero point as its use did 

not produce any response during pilot testing, controlling for mechanical stimuli (i.e. presence of 

liquid drop) with a negative control of 50% Holtfreter’s solution. The following concentration/vial 

codes were used in the statistical analysis of data: 

 

Supplementary Table 2: Serial Dilutions of Acetic Acid 

Molarity 0.03 0.05 0.08 0.12 0.17 0.26 0.39 0.59 

Vial Code 0 1 2 3 4 5 6 7 

         

Molarity 0.88 1.32 1.98 2.96 4.44 6.67 10.00 15.00 

Vial Code 8 9 10 11 12 13 14 15 

Behavioral Assessments 

 Colloquially, nociception and pain are used interchangeably. Semantically, they are 

different as nociception deals with the detection and processing of a noxious stimuli while pain 

is the manifestation of this sensory processing. Specifically, nociception can be defined as “the 

neural process of encoding and processing noxious stimuli” while pain is described as a “complex 

constellation of unpleasant sensory, emotional and cognitive experiences provoked by real or 

perceived tissue damage and manifested by certain autonomic, psychological, and behavioral 

reactions” (Dubin and Patapoutian, 2010). To explore the efficacy of antinociceptives with 

interrupting the neural processing of noxious stimuli, it is important to observe behavioral 

reactions to qualitatively describe pain. 

Feeding 

 At least one week of food consumption will be measured to establish a baseline intake. 

Also, feeding behavior (latency to feed) will be measured using a highly palatable treat, such as 

black worms. A few black worms (3-5) are placed in front of the animal in clear sight. Animals are 
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given up to 5 minutes to feed. A positive response is if the animal feeds on the worms, rather 

than simply snapping in the general direction of the worms. 

Cageside Assessments 

 The animals will be assessed cageside by blinded operators at least twice daily at 

predetermined time points. One blinded operator consistently performs the cageside 

assessment methods to ensure repeatability of testing. Assessment methods will include 

observing body posture and physical responses after gently tapping on cage; squirting 3-5 mL of 

water from a syringe at the base of the head with an inline jet squirting from a caudal-to-rostral 

direction, a transverse jet aimed at the forelimb aimed at the dorsal fin, and a transverse jet 

aimed at the hindlimb at the dorsal fin; gently touching the animal at the mid-body and tail; and 

response to the placement of a novel object near the animal. The animals will be scored using a 

Likert-style system (0-3; no response, minor response, nominal response, and major response) 

developed from observations during pilot studies. The scoring rubric is found in Supplementary 

Table 3. 

Supplementary Table 3: Likert Scores for Behavioral Testing 

RESPONSE KEY 

TEST 
SCORE 

0 1 2 3 

Tapping No response Bubbles Limb movement Gross movement 

Water Jet No response Bubbles Limb movement Gross movement 

Touching No response Any movement Move away Escape 

Novel 

Object 
No response Bubbles Limb movement Gross movement 

Pathology Scoring Rubrics 

 Histopathology was evaluated by an outside veterinary pathologist (Dr. Barry H. Rickman, 

BHR). BHR assessed all samples under blinded conditions and created ordinal scoring rubrics for 

clinically relevant pathology. After gaining familiarity with the samples, a Likert-style ordinal scale 

was created to describe the histologic features under review. Only immunohistochemistry slides 
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identifying TUNEL and BrdU and simple stains identifying heterophils, and lymphocytes were 

evaluated. The following tables contain the descriptions of the scoring rubric for each evaluation. 

Cardiomyocytes are abbreviated as CMs, high-power field is HPF. 

Supplementary Table 4: Histology Scoring Rubric for TUNEL Immunohistochemistry 

Score Description 

0 All fields negative. 

1 Rare cells stain positive, dusting of nuclei, <5% of cells. 

2 Few foci of few positive CMs, 5-25% of cells in ≥1 field. 

3 25-50% with moderate nuclear staining in CMs in ≥1 field. 

4 50-80% of cells with moderate nuclear staining in CMs in ≥2 fields 

5 Over 80% of strong nuclear staining in CMs in ≥5 fields. 

 

Supplementary Table 5: Histology Scoring Rubric for BrdU Immunohistochemistry 

Score Description 

0 All fields negative. 

1 Rare CMs or endothelial cells with positive nuclei, usually in undamaged area. 

2 Few scattered positive CM ± endothelial cells, usually in undamaged area. 

3 
Multifocal, few to moderate positive CMs ± endothelial cells, usually in undamaged 

area. 

 

Supplementary Table 6: Histology Scoring Rubric for Heterophils from H&E Staining 

Score Description 

0 All fields negative. 

1 Rare heterophils at the site of damage and hemorrhage, 1-2 per 40X HPF. 

2 Few heterophils at site of necrosis and degeneration, 3-8 per HPF, 1 or more fields. 

3 Moderate numbers of heterophils at the site of damage, 9-15 per HPF. 

4 
Large multifocal to coalescing numbers of heterophils at the site of damage, too many 

to count, > 17 per HPF. 

5 Diffuse infiltration of large numbers of heterophiles. 
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Supplementary Table 7: Histology Scoring Rubric for Lymphocytes from H&E Staining 

Score Description 

0 All fields negative. 

1 Few scattered lymphocytes. 

2 Moderate lymphocytic infiltrates. 

3 Numerous lymphocytic infiltrates. 

Preliminary Drug Studies 

 Past studies on opioid receptors in amphibians have described the subcutaneous (SC), 

intracoelomic (IC), intraspinal (IS), and intracerbroventricular (ICV) administration of opioids in 

these animals (Stevens, 1996, 2004; Stevens et al., 1994; Stevens and Rothe, 1997). With the 

parenteral delivery of analgesia, no external confounds to the pharmacodynamics or 

pharmacokinetics are expected. However, for the transcutaneous delivery of butorphanol, its 

behavior in the axolotl water used in our WSU DLAR husbandry of axolotls is unknown. The water 

used in all WSU DLAR axolotl husbandry is tap water treated using Kordon® water conditioner 

NovAqua® Plus™ and ammonia detoxifier AmQuel® Plus™ 

(http://www.kordon.com/kordon/products) with the addition of various salts to make 50% 

Holtfreter’s solution. The only study identified in a publication search that used a transcutaneous 

method of butorphanol delivery in newts (Koeller, 2009) used aged tap water. Aged tap water is 

tap water that sits in an open container to allow chlorine to evaporate, allow dissolved gases to 

come out of solution (since tap water is usually delivered cold and under pressure), and allow 

water to equilibrate in temperature. Since the husbandry of axolotls here at WSU uses chemically 

conditioned water, characterizing how the axolotl water interacts with butorphanol is necessary 

to properly compare the efficacy of butorphanol against the efficacy of buprenorphine. 

Butorphanol Degradation 

 The combination of axolotl water and butorphanol is a mixture of multiple chemicals and 

compounds. High-performance liquid chromatography (HPLC) was chosen as an appropriate 

method to separate, identify, and quantify the various components in the solution mixture. 

Various test runs were performed to choose the best parameters to elute the butorphanol 

(Torbugesic®, 10 mg/mL) in a timely manner. Also, to provide a reference signal that can 

http://www.kordon.com/kordon/products
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normalize the various runs with respect to differences in injected volume, buprenorphine 

(Buprenex®, 0.3 mg/mL) was used as an internal reference standard. Using guidelines from 

published studies that utilized HPLC to identify opioids in blood, plasma and urine (Boulton et al., 

2002; Dams et al., 2002), various conditions were run on a 1260 Infinity Quaternary LC System 

(Agilent Technologies, Cat. No. 1260 Infinity Quaternary LC System). Following this parameter 

study, all the subsequent HPLC experiments used the following settings: Diode Array Detector 

Wavelength = 240 nm; Mobile Phase = 25% HPLC-grade water and 75% HPLC-grade acetonitrile; 

System Flowrate = 1.0 mL/min. To reduce the height of the internal reference standard peak, the 

supplied buprenorphine was diluted to 0.1 mg/mL using distilled water. Using these settings, 

butorphanol eluted from the column after around 2 minutes; buprenorphine was detected after 

about 15 minutes. A graph of characteristic elution curves is shown in Supplementary Figure 1. 

All experiments were run using the Agilent Technologies 1260 Quaternary LC System. 

 From the butorphanol study in newts (Koeller, 2009), the target dose is 0.5 mg of 

butorphanol per liter of axolotl water (or 0.5x10-3 mg/mL of axolotl water). Calibration standards 

were made that spanned a range from 1.0x10-4 – 1.0x10-3 mg/mL, bracketing the target dose. 

Each calibration standard was run at least three times to determine a calibration curve for future 

analytical studies. Combining all the elution curves from the final runs for each calibration 

concentration shows no significant trend between the various samples (see Supplementary 

Figure 1). Using the analytic reports from the Agilent Technologies 1260 Quaternary LC System, 

the percentage of area under each butorphanol curve, as compared to the entire area under the 

curve (AUC) for the total run, were graphed to check if any significant trends were apparent. For 

each identified peak, the area under each peak’s curve signifies the quantity of the specific 

compound that is separated, eluted and detected by the diode array detector. The calibration 

solutions were mixed in a 1:1 ratio with the internal reference standard (buprenorphine, 0.1 

mg/mL) with 50 μL of the sample injected into the HPLC apparatus. The intent was to determine 

a relationship between the calibration concentrations of butorphanol and the constant 

concentration of internal standard; any variations in volume injected would be compensated by 

taking the area percent that is due to butorphanol. 
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 Considering the computed standard deviations for each proportion of area due to the 

elution of butorphanol, Supplementary Figure 2 does not reveal any clear trend in butorphanol 

concentration. Using SPSS (IBM Corporation©, Version 22) to run an ANOVA and correcting for 

multiple comparisons (Bonferroni method) confirmed that there are significant differences 

between comparisons of certain areas under the curve of the different calibration solutions, but 

there is no significant difference between all comparisons. Therefore, a distinct trend is not clear 

to enable the calculation of a calibration curve. A plot of the means from the ANOVA calculation 

is shown in Supplementary Figure 3. From these results, the HPLC runs are more qualitative than 

quantitative; a butorphanol concentration cannot be determined given elution data from an 

unknown sample. Thus, data from butorphanol samples run through the HPLC will at best be a 

“go/ no-go” assessment for the presence or absence of the analgesia in the axolotl water. 

Moving forward, the next step was to determine if the axolotl water causes the degradation of 

butorphanol. The dosing frequency (Koeller, 2009) was a single bolus of 0.5 mg of butorphanol 

per liter of tank water for the 72-hour recovery period. In the WSU IACUC protocol (A 02-02-14) 

covering the animal studies, a daily water change was approved. Therefore, samples of “aging” 

butorphanol were analyzed at multiple time points during the first 24 hours to determine if 

additional “maintenance” doses of butorphanol would need to be added before a scheduled cage 

and water change strictly due to the background degradation of butorphanol. To compare to the 

previously published study, a reduced sampling interval of the butorphanol sample was used 

between 24-72 hours of aging. 

 Characteristic curves for the aging, degradation samples are shown in Supplementary 

Figure 4. Inspecting these curves shows that the shape of the butorphanol peak (~ 2 min) does 

not appreciably change from the 0-hour sample to the 73-hour sample. Graphing the percent 

AUC over all the time points also shows a mean value without an apparent trend over time (see 

Supplementary Figure 5). Running an ANOVA also show that there are no significant differences 

between the samples when correcting for multiple comparisons. From this data, we can conclude 

that butorphanol does not degrade when exposed to the chemicals used to treat tap water for 

use with amphibians, nor does it have any undue interaction with the salts in the axolotl water 

(50% Holtfreter’s solution) that make it suitable for the physiology of axolotls. 
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Butorphanol Metabolism 

 Unlike the daily dosing of buprenorphine in the published study on newts (Koeller, 2009), 

butorphanol was administered only at the start of the 72-hour period in the recovery tank. The 

data do not show if this butorphanol dosing frequency maintained adequate levels of drug in the 

water; it can only be inferred that butorphanol was present after 72 hours from the results of the 

paper’s behavioral assay showing differences between the animals in the treated group and the 

untreated control group. Still, even if metabolism kinetics of butorphanol in the newts were 

provided in the study, it is not expected to be directly applicable to axolotls(Farkas and 

Monaghan, 2015). Thus, a small study (n = 4) of the metabolism of butorphanol in axolotls was 

executed at the proposed initial dose (0.5 mg per liter of tank water) to determine if additional 

butorphanol must be administered during the 24-hour period between cage and axolotl water 

changes to compensate for axolotl metabolism of the drug. 

 The axolotls used in this drug metabolism study ranged in weight from 80-130g. This 

required the use of large, static mouse cage bottoms to house the animals with enough room for 

them to fit in either cage dimension without having to curl their body. Additionally, 

polycarbonate tunnels (designed for mouse enrichment) are included in WSU axolotl husbandry. 

With the large static mouse cage, it was determined that 5 liters of water is sufficient to fully 

submerge the polycarbonate tunnels. 

 To prepare for the metabolism study, clean large mouse cages were filled with 5 liters of 

fresh axolotl water using a 1000 mL beaker (measurement lines are ±5%). Subsequently, 2.5 mg 

of butorphanol was added to each cage (0.25 mL of as-supplied Torbugesic®). The contents in the 

cage were slightly agitated to mix the drug solution. Before placing the animal back into the cage, 

using a syringe and 18g needle, a 0-hour sample was taken by withdrawing ~1 mL from the center 

of the cage at a point halfway into the water. Each sample was combined, mixed thoroughly by 

pipetting and shaking, and then run through the HPLC. Over the next 48 hours, multiple samples 

(7, 24, and 46 hours) were removed from each animal in the same manner in the same position. 

These later samples were not combined – each individual axolotl’s sample was run through the 

HPLC at the different sampling time points. Characteristic elution curves for the 0-hour sample 

are shown in Supplementary Figure 6. As this experimental condition replicated the target-dose 
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sample used during the characterization of the HPLC system, this figure closely mirrors 

Supplementary Figure 1. Characteristic elution curves for 7-hour, 24-hour, and 46-hour samples 

are shown in Supplementary Figure 7, Supplementary Figure 8, and Supplementary Figure 9 

respectively. The elution curves for the 7-hour samples show little difference to the baseline 0-

hour sample. The data at this timepoint suggests little to no change in the butorphanol has 

occurred. Looking at the 24-hour elution curves, we start to see additional peaks after the 

butorphanol peak, around the 3-minute and 4-minute time points. Although the appearance of 

these new, smaller peaks suggest that new compounds are appearing in the axolotls’ water, 

possibly degradation products of the butorphanol, a strong butorphanol peak at the 2-minute 

time point is still present. Finally, in the 46-hour elution curves, we see the development of strong 

peaks at the 3-minute and 4-minute time points along with the appearance of smaller peaks in 

the 5 to 10-minute window. Like the 24-hour elution curves, even with the growth of the 3-

minute and 4-minute time point peaks and the evolution of new smaller peaks, there is still a 

strong presence of the butorphanol peak at the 2- minute time point. The data suggests that 

butorphanol is still present in the axolotls’ water even after 46 hours of metabolism. However, 

since the experiments to characterize a calibration curve were unsuccessful, the values of the 

various peaks obtained during this metabolism test give no indication of the butorphanol 

concentration in the axolotl water. This data reveal that the axolotls do not completely 

metabolize butorphanol over a 48-hour period, eliminating the need to re-dose the animals 

before a water change is required (water is changed every day during the analgesia study). To 

reveal if the initial dose of butorphanol provides a high enough plasma level for therapeutic levels 

of pain relief, executing the surgery protocol is required. 
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Supplementary Figure 1: Characteristic elution curves of butorphanol (~2 minutes) and 
buprenorphine (~15 minutes) in axolotl water using various calibration solutions for 
butorphanol. 
 

 

Supplementary Figure 2: Area percent of the identified peak for various butorphanol 
calibration solutions. 
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Supplementary Figure 3: Plot of the means of the AUC for each butorphanol calibration 
solution. No clear calibration curve can be determined from this data. 
 

 

Supplementary Figure 4: Characteristic elution curves of butorphanol and buprenorphine in 
axolotl water using a solution of target-dose butorphanol aged before running the HPLC 
characterization. The curves have been shifted to a zero baseline. 
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Supplementary Figure 5: Area percent of the identified peak for various time points for the 
butorphanol degradation sample. 
 

 

Supplementary Figure 6: HPLC results of 0-hour samples in the axolotl butorphanol metabolism 
study. 
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Supplementary Figure 7: HPLC results of 7-hour samples in the axolotl butorphanol metabolism 
study. 
 

 

Supplementary Figure 8: HPLC results of 24-hour samples in the axolotl butorphanol 
metabolism study. 
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Supplementary Figure 9: HPLC results of 46-hour samples in the axolotl butorphanol 
metabolism study. 

MATLAB® Code for Image Post-Processing and Fractional Area Change Calculations 

 Verasonics provides template codes to end users as a programming example. The base 

script with file name SetUpL22_14vFlashAngles.m from Verasonics, last updated 12/07/2015 for 

SW 3.0, was used a baseline script file to operate the L22 linear transducer. The only modification 

was to enable the ongoing storage of 500 frames in a frame buffer and enable a Control Panel 

button to capture the current frames in the buffer and output to an audio-video interleave file. 

 Although no post-processing of the incoming receive signal is performed, there are 

controls on the MATLAB® front panel that allow for refinement of the ultrasound waves that are 

emitted by the crystals and detected by the transducer. Supplementary Figure 10 shows the 

settings used when scanning and recording heart motion. 
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 The Image Processing Toolbox suite add-on is required to access additional MATLAB® 

functions to process image data that were used to process ultrasound images in this work. Image 

contrast adjustment functions were piloted and options were identified to the author’s 

preference since all analysis will be done by the author. 

The final function call to enhance a grey scale image has the form: 

Filtered_Image = adapthisteq(Raw_Image,'distribution','exponential',‘NumTiles',[16 16]) 

Final MATLAB® Code 

Note: To use in MATLAB®, replace | in code with curly brackets (||=} and (| = {). This was 
done to prevent EndNote X7 from creating errors in Word. 
% This script is written to calculate Fractional Area Change (FAC) of heart  
% function. Regions of interest (ROI) are manually defined by the user and 
% MATLAB does the FAC calculations. 
% Jay Llaniguez (jllanigu@med.wayne.edu) 
 
clearvars; clc; % Clear variables and command window 
 
%% Choose image for systole and define path and filename. 
[FileNameSys,PathNameSys,FilterIndexSys] = uigetfile(... 
                          |'*.jpg;*.tif;*.png;*.gif','All Image Files';... 
                           '*.*','All Files'||,... 
                           'Select Image for Systole'); 
%% Choose image for diastole and define path and filename. 
[FileNameDia,PathNameDia,FilterIndexDia] = uigetfile(... 

 
Supplementary Figure 10: VSX Control and Process Tool Settings in MATLAB® 
Settings to run Verasonics Vantage 128 system to collect echocardiography data on axolotls. 
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                          |'*.jpg;*.tif;*.png;*.gif','All Image Files';... 
                           '*.*','All Files'||,... 
                           'Select Image for Diastole'); 
%% Read images into workspace as variables. 
FilePathSys = strcat(PathNameSys,FileNameSys); %Systole image. 
FilePathDia = strcat(PathNameDia,FileNameDia); %Diastole image. 
SysFormatSpec = "Systole File Read Is: %s \n"; 
DiaFormatSpec = "Diastole File Read Is: %s \n"; 
SysFileRead = sprintf(SysFormatSpec,FilePathSys); 
DiaFileRead = sprintf(DiaFormatSpec,FilePathDia); 
fprintf(SysFormatSpec,FilePathSys); 
fprintf(DiaFormatSpec,FilePathDia); 
I_Sys = imread(FilePathSys); %Reads in RGB (Truecolor) file. 
I_Dia = imread(FilePathDia); %Reads in RGB (Truecolor) file. 
% An RGB image, sometimes referred to as a truecolor image, is stored as an 
% m-by-n-by-3 data array that defines red, green, and blue color components 
% for each individual pixel. 
% Need to convert to Black & White (Grayscale) to perform following 
% calculations. 
BW_Sys = rgb2gray(I_Sys); 
BW_Dia = rgb2gray(I_Dia); 
% Apply contrast filters. 
Filtered_Sys = adapthisteq(BW_Sys,'distribution','exponential','NumTiles',[16 16]); 
Filtered_Dia = adapthisteq(BW_Dia,'distribution','exponential','NumTiles',[16 16]); 
%% Turn off image resize warnings. 
% Turn off this warning "Warning: Image is too big to fit on screen; displaying at 50% " 
% To set the warning state, you must first know the message identifier for the one warning you 
want to enable.  
% Query the last warning to acquire the identifier.  For example:  
% warnStruct = warning('query', 'last'); 
% messageID = warnStruct.identifier 
% messageID = Images:initSize:adjustingMag 
warning('off', 'Images:initSize:adjustingMag'); 
%% Manually define Regions of Interest (ROI). 
ROI_Sys = roipoly(Filtered_Sys); 
ROI_Dia = roipoly(Filtered_Dia); 
close(intersect(findall(0,'type','figure'),1)) %Close last roipoly window. 
%% Calculate Fractional Area Change Using Two Methods 
% bwarea 
BW_Sys = bwarea(ROI_Sys); %# of pixels in systolic binary image (BI) mask. 
BW_Dia = bwarea(ROI_Dia); %# of pixels in diastolic binary image (BI) mask. 
FAC_BW = (BW_Dia - BW_Sys) / BW_Dia * 100; %FAC using bwarea. 
formatSpec_BI = 'Fractional Area Change using bwarea is %4.2f%% \n'; 
fprintf(formatSpec_BI,FAC_BW) 
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% regionprop 
% Calculate area and perimeter in systolic binary image (BI) mask. 
RP_Sys = regionprops(ROI_Sys,'Area','Perimeter'); 
% Calculate area and perimeter in diastolic binary image (BI) mask. 
RP_Dia = regionprops(ROI_Dia,'Area','Perimeter'); 
FAC_RP = (RP_Dia.Area-RP_Sys.Area)/(RP_Dia.Area)*100; %FAC using regionprop. 
formatSpec_RP = 'Fractional Area Change using regionprop is %4.2f%% \n'; 
fprintf(formatSpec_RP,FAC_RP) 
% Extra Calculations - Fractional Perimter Change using regionprop. 
FPC_RP = (RP_Dia.Perimeter-RP_Sys.Perimeter)/(RP_Dia.Perimeter)*100; 
%% Write image files to disk. 
prompt = |'Enter Axolotl ID:','Enter Video Number:','Enter Systolic Frame Number:','Enter 
Diastolic Frame Number:','Trial'||; 
dlg_title = 'Input'; 
num_lines = 1; 
answer = inputdlg(prompt,dlg_title,num_lines); % Cell array of inputs. 
% Build names of output files. 
Filtered_Sys_Out = strcat(PathNameSys,answer|1||,'_','Video',answer(Galvez et 
al.),'_','Systole','_',answer|3||,'.png'); 
Filtered_Dia_Out = strcat(PathNameSys,answer|1||,'_','Video',answer(Galvez et 
al.),'_','Diastole','_',answer|4||,'.png'); 
ROI_Sys_Out = strcat(PathNameSys,answer|1||,'_','Video',answer(Galvez et 
al.),'_','Systole','_',answer|3||,'_','ROI','.png'); 
ROI_Dia_Out = strcat(PathNameSys,answer|1||,'_','Video',answer(Galvez et 
al.),'_','Diastole','_',answer|4||,'_','ROI','.png'); 
% Write out individual files. 
imwrite(Filtered_Sys,Filtered_Sys_Out); 
imwrite(Filtered_Dia,Filtered_Dia_Out); 
imwrite(ROI_Sys,ROI_Sys_Out); 
imwrite(ROI_Dia,ROI_Dia_Out);    
% Save workspace variables. 
Variables_Out = strcat(PathNameSys,answer|1||,'_','Trial','_',answer|5||); 
save(Variables_Out); % Creates MATLAB® formatted binary file (MAT-file). 
%% Plot filtered images. 
figure; imshow(Filtered_Sys); title(['Filtered Systolic Image Of Axolotl: ',num2str(answer|1||),'; 
Trial: ',num2str(answer|5||),'; Video: ',num2str(answer(Galvez et al.)),'; Frame: 
',num2str(answer|3||)]); 
figure; imshow(Filtered_Dia); title(['Filtered Distolic Image Of Axolotl: ',num2str(answer|1||),'; 
Trial: ',num2str(answer|5||),'; Video: ',num2str(answer(Galvez et al.)),'; Frame: 
',num2str(answer|4||)]); 
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APPENDIX B: IACUC & DLAR DOCUMENTATION – ANIMAL PROCEDURES 

 The development of a novel, mechanical approach to induce ischemia in both mammalian 

and amphibian animal models is central to this plan of work. Paramount to comparing the tissue 

response to ischemia between the two animals is the use of an identical injury model that uses a 

consistent method to induce ischemia, leading to cellular necrosis, and subsequently producing 

an area of infarcted tissue. Performing the commonly used ligation of the left anterior descending 

(LAD) artery to induce ischemia in mammals leads to a consistent and reproducible volume of 

myocardium at risk (Salto-Tellez et al., 2004; Wang et al., 2006). However, lacking coronary 

arteries (Reese et al., 2002), performing a coronary artery ligation in amphibians is not an option. 

Other models to induce cardiac tissue damage such as cryoinjury (van den Bos et al., 2005) or 

diphtheria-toxin-receptor conditional ablation (Akazawa et al., 2004) do not recapitulate the 

pathophysiologic processes in ischemia-induced cardiac tissue necrosis. Therefore, the concept 

of mechanically clamping the apex of the heart to prevent perfusion of cardiac tissue can be 

applied in both animals and produces the environment (inadequate blood flow to the beating 

ventricular myocardium) for the desired pathophysiology (ischemia-induced cellular necrosis) 

and tissue pathology (myocardial infarction). 

Justification of Use 

 Axolotl (Ambystoma mexicanum) – The zebrafish (Danio rerio) has been extensively 

studied as a model for cardiac regeneration (Jopling et al., 2010; Poss, 2007; Poss et al., 2002; 

Raya et al., 2004; Zhang et al., 2013) due to its many advantages in modeling human disease 

(Chico et al., 2008; Dooley and Zon, 2000; Kari et al., 2007). However, the zebrafish heart is much 

more primitive than mammalian hearts: zebrafish have two-chambered hearts that currently lack 

any evidence of secondary heart field derivatives (Lieschke and Currie, 2007). With their three-

chambered hearts, amphibians also exhibit physiological traits in common with all vertebrates 

including mammals (Burggren and Warburton, 2007). Compared to zebrafish, the closer 

developmental ancestry of amphibians to mammals suggest they are more suitable models for 

modeling mammalian and human diseases (Burggren and Warburton, 2007; Voss et al., 2011); 

despite differences with higher mammals, epicardial development in the axolotl is similar to the 

general pattern described for higher vertebrates (Fransen and Lemanski, 1990). Additionally, 
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they also have been recently evaluated as models for cardiac regeneration (Cano-Martinez et al., 

2010; Roy and Gatien, 2008). 

 Observations of the axolotl’s ability to regenerate have historically been attributed to the 

neotenic development of axolotls (Roy and Gatien, 2008). The ability to robustly regenerate 

during juvenile stages of development is corroborated by observations that animals of the 

Xenopus genus lose the ability to regenerate when they begin to metamorphose into an adult 

(Whited et al., 2012)]. The overall goal of this proposal is to move towards a more mechanistic 

explanation to elaborate the differences between non-mammalian vertebrates and higher 

mammals. Studies have detailed robust myocardium regeneration in higher mammals, albeit only 

in very young animals (Haubner et al., 2012; Porrello et al., 2011; Rumyantsev, 1977). More 

importantly, these studies confirm the genetic programs for cardiac repair exist within 

mammalian DNA, but are somehow quickly suppressed. Determining the presiding molecular and 

cellular mechanisms in the axolotl heart and expressing them in mammalian cardiomyocytes will 

help elucidate the mechanisms behind the repressed ability to remodel the damaged adult 

mammalian heart with native cardiac cells (Xin et al., 2013). 

 To elucidate the processes that prevent cardiac regeneration in humans, we must use an 

animal model with a known, robust response in repairing cardiac tissue after injury. The axolotl 

has been chosen based on its well-documented repair and regeneration capabilities that are not 

duplicated in commonly used laboratory animal models (Cano-Martinez et al., 2010; Roy and 

Gatien, 2008). Also, using a less sentient, non-mammalian species for survival-surgery procedures 

is desired over similar studies performed on higher mammals. 

 Studies outlined in the axolotl cannot be replaced by non-animal models. There are 

currently no established axolotl cell lines available for purchase and the full axolotl genome is 

almost completely sequenced, but not fully characterized, preventing researchers from 

performing in vitro experiments or using mathematical or computer models. The sample size of 

6 animals per matched group (each animal will serve as its own matched groups, 10 separate 

days for sampling) was determined by assuming an α = 0.05 and a β = 0.05 in sample size 

calculations while estimating a large effect size (σ = 0.25 for laboratory-bred animals) (Drăghici, 

2012) in the differential expression of ligands, receptors, transcription factors, signaling proteins 
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and cell cycle regulators. The choice of a large effect size is based on the benchmarks for success 

in axolotl survival surgery. Since our protocol for inducing a myocardial infarction relies on a 

visible functional change of cardiac tissue (damaged tissue must be quiescent or contracting 

irregularly and at a much lower rate than remote regions of the heart), the intracellular and 

extracellular milieu of the damaged heart should be significantly different than remote regions 

of the heart. Also, since the axolotls are being purchased from a laboratory-bred colony, the 

genes should be quite homogenous leading to a lower standard deviation in measurements 

across animals. 

 Mouse (Mus musculus) – For comparisons to a higher mammal, the mouse has been 

chosen due to the wide use of this animal in cardiovascular disease research (Battey et al., 1999). 

Protocols detailing cardiac procedures for inducing cardiac injury such as MI are widely published 

(Azhar et al., 1999; Bernal et al., 2009; Michael et al., 1995; Tarnavski et al., 2004; Yang et al., 

2002; Yue et al., 2013). Additionally, the availability of robust technologies for the mechanistic 

study of cellular gene expression and gene regulation (Field, 1993; Lewandoski, 2001; Yamamoto 

et al., 2001) make the mouse a particularly well-suited model for studying cellular pathways and 

molecular mechanisms. Well-characterized models of molecular-genetic systems can be used to 

validate the results of this research proposal in vitro with primary cell cultures of cardiomyocytes. 

The future application of Specific Aims 1 and 2 is to generate transgenic mice that express 

cardiac-specific, drug-inducible genes that confer increased myocardial regenerative capacity. In 

these conditionally drug-induced transgenic animals, the efficacy of reawakening myocardial 

regeneration will be assessed in a model of MI compared to control animals (non-induced 

transgenes and syngeneic wild-type animals). 

Veterinary Care 

 Animals will be housed in Association of Assessment and Accreditation for Laboratory 

Animal Care- (AAALAC) accredited vivariums located in facilities supervised by the Animal 

Facilities Core/Department of Laboratory Research. These facilities are overseen by licensed 

veterinarians, supervised by Wayne State University’s (WSU) Attending Veterinarian (AV), as 

required by the Animal Welfare Act Regulations. Daily feeding, care and monitoring are 

performed by DLAR personnel as defined by protocols that are being developed by the PI and the 
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AV. Newly ordered axolotls will be isolated from current animals and allowed to acclimate to 

their new surroundings for 7-10 days before any procedures are initiated. This is to reduce stress 

on the new animals and prevent the transmission of any organisms or contaminants from the 

supplier. 

Procedures to Minimize Discomfort, Stress, Pain and/or Injury 

 Axolotls and mice will be visually inspected daily for signs of discomfort, stress, pain and 

injury. Since axolotls are an uncommonly used laboratory animal, specific protocols will be 

developed with the AV to ensure DLAR personnel are vigilant to their needs. Any animals that 

show signs of prolonged discomfort or pain shall be removed from the study and treated as 

needed; if measures become futile, animals shall be euthanized. All survival surgical procedures 

will be performed under anesthesia (0.1% tricaine methanesulfonate baths for axolotls, 

intraperitoneal pentobarbital [70-80 mg/kg] injections or isoflurane [1-3% in oxygen] for mice). 

Method of Euthanasia 

 Axolotls requiring euthanasia will first be brought to a surgical plane of anesthesia by 

placing the animal into a bath of 0.1% tricaine methanesulfonate. Once anesthesia has been 

induced, the animal can be euthanized by placing it into a bath of 0.5-1.0% tricaine 

methanesulfonate for at least 60 minutes. For assurance of death, the axolotl will be decapitated 

and the brain and spinal cord pithed. This method is taken directly from the 2013 edition of 

American Veterinary Medical Association (AVMA) Guidelines for the Euthanasia of Animals. 

Mice requiring euthanasia will be subject to an environment of increasing carbon dioxide 

concentration until breathing has stopped. For assurance of death, a cervical dislocation will be 

performed after breathing has stopped for at least one minute in the hypoxic environment. This 

method is taken directly from the 2013 edition of AVMA Guidelines for the Euthanasia of Animals. 

Proposed Use of Animals 

 The following section provides detail on the use of animals in this plan of work. This is the 

full approved version of WSU IACUC Protocol A 02-02-14 incorporating all amendments through 

February 2017. This was moved to eProtocol 16-12-173 once the protocol expired in February 

2017. 
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 APPLICATION TO USE VERTEBRATE 
ANIMALS FOR RESEARCH OR TEACHING 

2015 
Animal Welfare Assurance # A3310-01 

INSTRUCTIONS: 

1. Check deadline dates for submission. 
2. Verify that this is the most recent version of the Protocol 

Application (see footer). 
3. Submit the Protocol Application and the associated 

grant(s) (if applicable) with an Animal Hazardous Agents 
Form via email to IACUC@Wayne.edu.  The subject line of 
the email should read: “NEW PROTOCOL (PI Name)” 

4. You will be contacted by the IACUC Office regarding the 
pre-review of your application.   

5. After you have finalized the application through the pre-
review process, you will be instructed to deliver the 
following to the IACUC Office: 
a. The SIGNED ORIGINAL application 
b. ONE copy of the grant(s)/proposal(s) (if applicable) 

 For IACUC Office Use Only – Leave Blank 

IACUC NUMBER: A 02-02-14 

Veterinary Reviewer: Brossia-Root 

Primary Reviewer:  

Secondary Reviewer:  

REVISED:  

 
INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE 
87 E. Canfield, Second Floor 
Phone Number: (313) 577-1629 
Protocol submission:  IACUC@Wayne.edu  

 
I. – ADMINISTRATIVE DATA  

 

1. Principal Investigator for Protocol (PI on Grant Proposal): 

Name and Degree: 
Jeremy T. Llaniguez, B.S, M.S. 

University Title: 
MD/PhD Candidate 

WSU Access ID (e.g. aa1234): 
Et9286 

Primary Department/Division: 
Biomedical Engineering 

Office Address: 
6135 Woodward Ave, Room 1420 

Office Phone: 
313.577.1360 

E-Mail Address: 
jllanigu@med.wayne.edu 

Laboratory Phone: 
313.577.1304 

Emergency Phone: 
310.880.9946 (Mobile) 

 

2. Title of Project: (This should match the title on the grant proposal) 
“Elucidating Cardiac Repair Mechanisms in Animals with Robust Regeneration to Enhance Cardiac Repair in Humans” 

 

3. Title of Master Protocol or Core/Program/Consortium Project: (Include name of PI listed on face page of grant): 
N/A 

 
4. Co-Investigator or Faculty Advisor: 

  Not Applicable 

  Co-Investigator 

X  Faculty Advisor (if the PI is not a faculty member) 

   

  The Co-Investigator will be responsible for ALL animal work 

 

Name and Degree: 
Dr. Juri Gelovani, MD/PhD 

University Title: 
Chair, Biomedical Engineering 

WSU Access ID (e.g. aa1234): 
fg0846 

Primary Department/Division: 
College of Engineering/Biomedical Engineering 

Office Address: 
6135 Woodward Ave, Room 1417 

Office Phone: 
313.577.1346 

E-Mail Address: 
juri.gelovani@wayne.edu 

Laboratory Phone: 
313.577.1304 

Emergency Phone: 
713.632.4969 (mobile) 
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5. Research Personnel: List all persons (other than the PI/Co-I) who will work with animals on this project.  Indicate which 
individuals should be listed as Emergency Contacts.  Emergency Contacts need to be able to authorize treatment or euthanasia 
in the event that the PI/Co-I CANNOT BE REACHED.   
IMPORTANT: Review the IACUC Training Requirements.  All laboratory personnel must complete the appropriate training, some 
of which must be finished before this protocol can be submitted.   

 

Name/Degree/Title 
WSU 

Access ID: 
Office/Lab 

Phone 
Home/Cell 

Phone 
E-mail Address 

Emergency 
Contact 

(Y/N) 

Stephen DiCarlo, PhD, Professor ae8278 313.577.1557 N/A sdicarlo@med.wayne.edu N 

Heidi Lujan, PhD, Assistant 
Professor of Research 

ae8936 313.577.1557 N/A hlujan@med.wayne.edu N 

Tara Cotroneo, DVM, Director, 
Veterinary Technical Services 

et1135 313.577.1156 N/A tara.cotroneo@wayne.edu N 

Gerald Hish, DVM, Director, 
Veterinary Surgical Services  

fz2469 313.577.1405 N/A fz2469@med.wayne.edu N 

Charles Chung, PhD, Assistant 
Professor 

fx6780 313.577.1540 N/A cchung@med.wayne.edu N 

Morgan Szczepaniak fp3474 313.577.8303 N/A morgan.szczepaniak@wayne.edu N 

 

X 
This research will/may involve students/visitors (not listed above). Checking this box affirms that you will comply with the 
Supervised Student or Visitor Training Policy. 

 
6. Primary Contact for IACUC Correspondence (choose one): 
 

X Principal Investigator  

 Co-Investigator  

 Research Staff Member (from question #5), specify: N/A 

 

 Other (list below): 

 

Name/Degree/Title Office/Lab Phone Home/Cell Phone E-mail Address 

N/A N/A N/A N/A 

 
7. Source of Funding: 
 

 Internal (specify):  

 

 Subcontract (specify): 

X External (specify): 

 

 Submitted (notification pending): 

 Just In Time (funding anticipated) 

X Awarded: AALAS GLAS Standard Grant 

 
 
8. If this protocol is being submitted with a GRANT/PROPOSAL/CONTRACT, are all the procedures described in this protocol? 
 NOTE: Federal agencies require that all procedures using animals described in the grant/proposal must be approved by the IACUC.  

If this is an initial submission of a multi-year grant beyond the three year protocol period, all the work and number of animals 
must be included in this protocol application.  

 Not Applicable 
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 Yes 

X No  

 
If no, list any animal experiments in the associated document(s) that are NOT described in this protocol, and explain their 
exclusion in the box below.  This may include work that has already been completed, work that will not be conducted (the 
granting agency must already be aware of the exclusion), or work that will be performed by collaborators at other institutions.  

 

This protocol is a pilot study for surgical techniques and procedures to ensure the success of a novel cardiac ischemia model. This 
protocol does not cover the exact studies outlined in the accompanying F30 NIH grant; it will be used to ensure the surgical approaches 
we use will result in the highest animal survival rates once the full protocol is executed. Thus, an amendment to this protocol will be 
filed (after the pilot study is complete and before actual experiments begin) detailing the use of multiple animals (n=6) per 
experimental group (a group consisting of a cohort of animals euthanized at a certain time point after surgery) to achieve statistical 
significance will be submitted once the exact surgical procedures have been ascertained using the pilot study outlined in this protocol. 
Additionally, the accompanying grant also describes testing the findings of Specific Aim 1 (which uses the novel cardiac ischemia 
model) with primary cell culture studies (Specific Aim 2). The creation of the primary cell cultures using neonatal cardiac muscle cells 
has also been excluded from this surgical pilot study protocol; it shall be included in the protocol amendment that shall encompass all 
tests of the accompanying grant. 

 
9. Has this protocol (or a very similar protocol) been submitted to the IACUC under an alternate funding source? 
 

X No 

 Yes: STOP – file an amendment to add/change the funding source and modify animal number or procedures if necessary. 

 
10. Type of Project: (Check all appropriate boxes below) 
 

X New Protocol 

 

 Continuation of Expiring Protocol Replacing Protocol: A     -   -    

 
a. Provide a brief summary of the work completed under the expiring protocol.  It may be helpful to include the number of 

animals that were used/bred related to how many were approved in the expiring protocol; DLAR can provide you with a 
report, call 577-1107. 

 

 
b. Describe any unexpected adverse events that resulted in increased pain, distress or death rates to animals that were not 

described in the original protocol.  Include how these were managed and what steps were taken to prevent recurrence 
(if applicable).  Please make sure that any additional adverse effects, expected mortality, pain category changes, humane 
endpoints, etc. have been incorporated into this application. 

 

 
c. Do you have animals currently in-house that will be transferred to this renewal protocol upon approval? 

 No 

 Yes (Please include them in Q18 Transfer of Animals table) 

 

X Research 

 Teaching 

 Other (Please List):  

 

 This includes research that involves the use of facilities at John D. Dingell VAMC, Detroit, MI (station number 553) 

 Add “(VAMC)” to the end of your project title.   
 Please note that VA research cannot be initiated until after R&D Committee approval. 
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II. – QUALIFICATIONS/EXPERIENCE OF PRINCIPAL INVESTIGATOR AND RESEARCH PERSONNEL  
 

11. Previous Experience and Responsibilities for this Protocol:  Identify the responsibilities of each individual (include the PI 
and all research personnel), his/her experience with the procedures and the animal species, and who will train personnel on the 
procedures for work specific to this protocol. 

 

  Years of Experience  

Name Species Specific Role in Project* 
With this 
species 

With these 
procedures 

With survival 
surgery (if 
applicable) 

Who will train the 

individual?** 

Dr. Juri 
Gelovani 

Axolotl 
Faculty advisor; will not perform 
procedures on animals. 

0 0 0 N/A 

Mice 20 20 20 
N/A – Trained & 

Experienced 

Jeremy (Jay) 
Llaniguez 

Axolotl 
Care, handling, pre-treatments, 
anesthesia, surgery (survival & non-
survival), monitoring, post-procedural 
care, euthanasia, and behavioral 
assessment. 

0 0 0 
DLAR 

External Labs*** 

Mice <1 <1 0 DLAR 

Dr. Stephen 
DiCarlo 

Mouse 
Training/advice on surgical 
procedures. 

>30 >30 >30 
N/A – Trained & 

Experienced 

Dr. Heidi 
Lujan 

Mouse 
Training/advice on surgical 
procedures, perform intubations, 
assist with thoracotomies. 

>20 >20 >20 
N/A – Trained & 

Experienced 

Dr. Tara 
Cotroneo 

Axolotl 
Care, handling, pre-treatment, 
monitoring, post-procedural care, 
behavioral assessment and 
euthanasia. 

N <1 <1 N/A 

Dr. Gerald 
Hish 

Axolotl N <1 <1 N/A 

Morgan 
Szczepaniak 

Axolotl 
Care, handling, pre-treatment, 

monitoring, post-procedural care, and 
pain/behavioral assessments. 

N <1 <1 N/A 

Charles 
Chung 

Axolotl 
Echocardiography of animals, training 

of other personnel on protocol. 
N <1 <1 N/A 

*Examples include: care, handling, pre-treatments, oral gavage, anesthesia, surgery (indicate whether it is survival or non-survival), 

monitoring, post-procedural care, euthanasia in the stated species. 

**Training can be listed as “N/A – Trained and Experienced” (this question only applies to the procedures described in this protocol) 

***Axolotl training from an external lab will be through the University of Kentucky’s Ambystoma Genetic Stock Center. 

 
12. Are there any non-routine measures, such as special vaccines or additional health screening techniques that would 

potentially benefit staff (e.g. research, husbandry, veterinary) that participate in or support this project? Routine measures 
included in the Occupational Health and Safety Program (vaccination for tetanus, rabies, and hepatitis B, and TB screening) need 
not be mentioned here.  

 

X No 

 Yes (describe them below): 
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III. – PURPOSE AND POTENTIAL VALUE OF STUDY 

 
13. In non-technical, everyday language that a senior high school student would understand, BRIEFLY state the research or 

development question to be addressed in this protocol.  Also, explain the potential value of this study and the ways the 
proposed animal use might benefit human or animal health, the advancement of knowledge, education and training, or the 
good of society. 
A scientific abstract from a grant or funding proposal is not acceptable.  Do not describe experiments or procedures, or use 
abbreviations.  The information provided in this section could be used for possible press release.  Please limit the response to 
one-half page. 

 

The leading cause of death in the US and worldwide result from cardiovascular diseases such as myocardial infarction (heart attack), 
that due to the lack of cardiac tissue repair or regeneration often leads to death. In contrast to humans and other mammals, lower 
vertebrate species such as the axolotl (an aquatic salamander) and zebrafish can regenerate severed or injured limbs and other organs 
including the heart. The major innovation of this project is to use systems biology (the study of interactions between individual 
biological components and/or pathways) and comparative transcriptome analysis (the characterization of messenger RNA to 
understand which areas of DNA are important) approaches to understand the differences in gene expression responsible for higher 
regenerative capacity of cardiomyocytes (heart muscle cells) in lower vertebrates that is lost or suppressed in mammals and humans. 
The ultimate application of this knowledge will be to modify cells (e.g. cardiomyocytes or stem cells) to enhance myocardial 
regeneration for therapy of myocardial infarction. 

 
IV. – ANIMAL USE JUSTIFICATION 

 
The US Animal Welfare Act (AWA) and USDA Policy #12 regulations require principal investigators to consider alternatives to 
procedures that may cause more than momentary or slight pain or distress to animals, and provide a written narrative of the methods 
used and sources consulted to determine the availability of alternatives, including refinements, reductions, and replacements (the 
3Rs).  
 

Examples of Refinement: The use of most appropriate anesthetics and analgesics, the use of remote telemetry to increase the 
quality and quantity of data gathered, and humane endpoints. 

Examples of Reduction: The use of shared control groups, preliminary screening in non-animal systems, innovative statistical 
packages or a consultation with a statistician. 

Examples of Replacement: Alternatives such as tissue culture models, or computer-based simulations.  Alternative animal models 
lower on the phylogenetic scale (i.e. using a mouse model in lieu of a non-human primate model). 

 
14. Consideration of Alternatives and the Prevention of Unnecessary Duplication.  Complete items below.  Keep copies of 

computer database search results in your files to demonstrate your compliance with the law if regulatory authorities or the 
IACUC should choose to audit your project.   

 
The USDA webpage Literature Searching and Databases contains links to excellent resources that can help you better understand 
the requirements and organize your search for alternatives. 
 
WSU Medical School – contact Shiffman Medical Library via askmed@wayne.edu or 313-577-1094 
WSU General Libraries – visit ASK-A-LIBRARIAN; subject specialists are available. 

 
a. Investigators must consider less painful or less stressful alternatives to procedures, and provide assurance that proposed 

research does not unnecessarily duplicate previous work. You should perform one or more database searches to meet these 
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mandates unless compelling justifications can be made without doing so.  Complete the table below for each database search 
you conduct to answer the questions below. 

 
The literature search must not be older than 3 months at time of submission of this protocol application. 

Name of the 
database(s) 

Date 
search was 
performed 

Period (years) 
covered by 
each search 

Key words 
and/or search 
strategy used 

Indicate below for which alternative mandate each search was 
conducted by placing an “X” in the proper column 

Computer models 
or in vitro 

techniques 

Use of less-
sentient 
species  

Use of less stressful 
model or methods, 

or fewer animals 

Lack of 
unnecessary 
duplication 

Google Scholar 
PubMed 
Web of Science 
Scopus 

22/DEC/13 1990-2013 Axolotl Sal Site 
X 

(Computer 
models) 

   

Google Scholar 
PubMed 
Web of Science 
Scopus 

22/DEC/13 1990-2013 
Axolotl Culture 
Cardiomyocyte 

X 
(In vitro 

techniques) 
   

Google Scholar 
PubMed 
Web of Science 
Scopus 

22/DEC/13 1990-2013 Axolotl Cell Line 
X 

(In vitro 
techniques) 

   

ATCC 
(www.atcc.org) 

22/DEC/13 N/A Axolotl 
X 

(In vitro techniques) 
   

Google Scholar 
PubMed 
Web of Science 
Scopus 

14/FEB/14 1990-2014 
Computer 
Models Cardiac 
Axolotl Study 

X 
(Computer 

models) 
   

Google Scholar 
PubMed 
Web of Science 
Scopus 

14/FEB/14 1990-2014 
Models Cardiac 
Axolotl Study 

 X   

Google Scholar 
PubMed 
Web of Science 
Scopus 

14/FEB/14 1990-2014 
Myocardial 
Infarction Axolotl 

  X X 

Google Scholar 
PubMed 
Web of Science 
Scopus 

14/FEB/14 1990-2014 
Cryoinjury 
Myocardial 
Infarction Axolotl 

  X X 

Google Scholar 
PubMed 
Web of Science 
Scopus 

14/FEB/14 1990-2014 
Murine Cardiac 
Regeneration 
Computer Model 

X 
(Computer 

models) 
   

Google Scholar 
PubMed 
Web of Science 
Scopus 

14/FEB/14 1990-2014 
Murine Cardiac 
Regeneration in 
vitro 

X 
(In vitro 

techniques) 
   

ATCC 
(www.atcc.org) 

14/FEB/14 1990-2014 Murine 
X 

(In vitro techniques) 
   

Google Scholar 
PubMed 
Web of Science 
Scopus 

14/FEB/14 1990-2014 
Cardiac 
Regeneration 
Model Organisms 

 X   

Google Scholar 14/FEB/14 1990-2014 Mechanical   X X 
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PubMed 
Web of Science 
Scopus 

Clamp 
Myocardial 
Infarction Murine 

Google Scholar 
PubMed 
Web of Science 
Scopus 

14/FEB/14 1990-2014 
Cryoinjury 
Myocardial 
Infarction Murine 

  X X 

b. Could any of the animal procedures described in this protocol be replaced by non-animal models, such as mathematical 
models, computer simulations, or in vitro biological systems?  Indicate below if such replacement is or is not possible, and 
provide a narrative as on how you came to your conclusion.  
 

Initial studies outlined in the axolotl cannot be replaced by non-animal models. A search using Google Scholar and 
PubMed (Search 3) show there are currently no established axolotl cell lines available for purchase to conduct in vitro 
experiments. This is corroborated by the lack of axolotl cell lines (Search 4) from a commercial laboratory (American Type 
Culture Collection [ATCC]). Additionally, the full axolotl genome has not been completely sequenced and characterized, 
preventing researchers to rely solely on computational models (Search 1). We plan on using the axolotl based on its well-
documented repair and regeneration capabilities that are not duplicated in commonly used laboratory animal models 
[1-14]. Also, per question 14c below, the use of a less sentient, non-mammalian species (such as the axolotl) for survival-
surgery procedures is desired over similar studies performed on higher mammals. 
For comparisons of findings in the axolotl to a higher mammal, the mouse has been chosen due to the wide use of this 
animal in cardiovascular disease research. Protocols detailing cardiac procedures for inducing cardiac injury such as 
myocardial infarctions are widely published [15-27]. Additionally, the availability of robust technologies for the 
mechanistic study of cellular gene expression and gene regulation make the mouse a particularly well-suited model for 
studying cellular pathways and molecular mechanisms [28-31]. Gene transduction systems can be used to validate the 
results of this research proposal in vitro with primary cell cultures of cardiomyocytes. 

 
c. Could a smaller, less sentient mammalian species or a non-mammalian species (e.g. fish, invertebrates) substitute for the 

mammals in any of the experiments planned?  Indicate below if such substitution is or is not possible and provide a narrative 
on how you came to your conclusion. 

 

Smaller, less sentient, non-mammalian species will be used as the starting animal model to determine gene expression 
in cardiac tissue after cardiac injury. Since we are comparing the differences in cardiac regeneration between lower 
vertebrates and mammals, comparisons with a mammalian species (Mus musculus in our protocol) is paramount to the 
success of the research proposal. Thus, as the ultimate goal of the research is to verify if regeneration mechanisms in 
mammals can be reawakened using mechanisms found in other lower vertebrates, a non-mammalian model cannot be 
used. The findings must be validated in a mammalian system. 

 
i. Describe the BIOLOGICAL characteristics that make each species, strain and sex selected the most appropriate for this 

project.  If you will use transgenic, knockout or knockin animals, describe the unique feature(s) of each.  Cost is not an 
acceptable consideration. 

 

Axolotl (Ambystoma mexicanum) – This species is being chosen for its ability to repair and regenerate damaged tissues 
due to experimentally induced injury [8,11] or natural trauma [9]. Multiple laboratories are working on completing 
the genomic sequence and characterizing the next-generation sequencing reads for this species, making the axolotl 
attractive to performing genomic/transcriptomics studies in the field of regeneration. Additionally, they are larger 
than newts, making them easier to manually handle and perform survival cardiac surgery compared to their smaller-
sized cousins. Males and females will be used in the experiments to reduce confounding. The wild-type, laboratory 
bred animals available from the Ambystoma Genetic Stock Center (AGSC) located in the Department of Biology at the 
University of Kentucky (Lexington, KY) will be sufficient for our experiments. No specific transgenic axolotl strain is 
required for the proposed procedures. 
Mice (Mus musculus) – The strain of choice for cardiac injury procedures in mice will be wild type C57BL/6J mice, to 
be acquired as outlined in Question 17. Both male and female mice will be used to reduce confounding. As stated 
before, this strain is widely used in cardiovascular research and in genomic studies. Additionally, the mouse has been 
chosen for comparison testing as recent studies have been published concerning the transient regeneration of the 
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neonatal mouse heart, including one study that provided information on transcriptome data (RNA-Seq) of the 
transient regeneration evinced by neonatal mice. Results in this research proposal can be compared to these published 
studies. 

 
d. Could a different animal model or different animal procedure that involves (1) less distress, pain, or suffering, or (2) fewer 

animals substitute for any proposed animal model or animal procedure planned?  Indicate below if such replacement is or 
is not possible, and provide a narrative on how you came to your conclusion: 

 

The overall project course described in question 13 will use less sentient, non-mammalian species that are known to 
express the desired tissue repair and regeneration characteristics to drive more focused experiments in mammalian in 
vitro models. This will reduce distress, pain and suffering when validating the results in the mammalian cellular system. 
However, to ascertain the differences between the lower vertebrates and mammalian models, we still must use 
mammalian species when performing survival surgery procedures to compare the tissue response between the two 
animals. 
In the cardiac anatomy of the axolotl [1], cardiac arteries are not present to provide a blood supply to the exterior 
portions of the heart. Unlike mammals that have coronary vasculature (e.g. right coronary artery [RCA], left anterior 
descending [LAD] artery and/or left circumflex [LCX|| artery), inducing a myocardial infarction (MI) by coronary artery 
ligation or occlusion to produce an environment of ischemia (for studies in mice see [15-21,23-27]) is not possible in 
axolotls (salamanders in general); past studies in myocardial regeneration in axolotls have used resection models [8,11] 
that do not replicate the tissue injury in ischemia. In order to compare the differences in cardiac-tissue response and 
regeneration after ischemia between lower vertebrates and mammals, a common model of inducing ischemia in both 
animals is required. 
Although there is building evidence of the utility of cryoinjury for studying mammalian cardiac scarring and regeneration 
responses (due to the similarity in evolving tissue histology during tissue repair and scarring) [25], the mechanism of 
cellular damage due to cryoinjury [32] do not engage the same response mechanisms of apoptosis due to ischemia 
[33,34]. In summary, cell death due to cryoinjury is immediate, a consequence of the rapid rate of tissue freezing using 
liquid nitrogen (LN2). Specifically, in cryoinjury, ice crystal formation first occurs in the extracellular matrix, creating a 
hyperosmotic extracellular environment (solution-effect injury) that draws water away from cells. As a result, cells shrink 
damaging cell membranes and intracellular constituents. With further cooling, ice crystals soon form within cells, 
disrupting organelles, protein trafficking and physically shearing cell membranes. This rapid and mechanically-based 
disruption of normal cell physiology does not allow the cell to respond to the insult by transcribing new mRNA and 
translating new proteins that can help it survive the injury. 
On the other hand, the cellular-response to damage from ischemia is not mediated by immediate cell death. For 
irreversible injury to occur, cardiac cells must be subject to ischemia for greater than 20 minutes [33,34]. During this 
time, the cells are able to respond to the insult by upregulating and/or downregulating genes that regulate apoptosis 
and cell function [33,35]. Additionally, late-phase responses to ischemia play a role in cell survival [36]. 
With coronary artery ligation/occlusion not possible in both animals and with cryoinjury a non-ideal approach to study 
the change in tissue responses due to ischemia, a novel method of inducing ischemia (mechanically occluding tissue) is 
being explored. We are also looking to use the same regions of tissue (apical portions) between the two animals, instead 
of achieving ischemia in axolotls using mechanical clamping and an established model of ischemia in mice like LAD ligation 
since it has been noted that different regions of the heart respond differently to ischemia (apical vs. ventricular vs. atrial 
cardiac tissue) [37]. 
Mechanically clamping a portion of tissue has inherent variability in the resulting infarct size. However, this pilot protocol 
will develop procedures and time points for mechanical clamping to induce ischemia in a minimum volume (e.g. a 30-
minute clamping time results in a minimum volume of ischemic tissue from the apex to a point 2mm deep from that 
landmark). Therefore, although the border regions may vary in distance from the apical landmark, defining a minimum 
volume will allow us to sample tissue in the full protocol that excludes tissues of variable ischemic exposure. 

 
e. Does the proposed research unnecessarily duplicate previous work?  Indicate below if the proposed work unnecessarily 

duplicates previous work and provide a narrative on how you came to your conclusion: 
 

The proposed research does not unnecessarily duplicate previous work. Unlike past studies in the axolotl (and urodeles 
in general), most experiments have examined the repair and regeneration of limbs of the appendicular skeleton. Most 
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studies have focused on these areas of the axolotl and urodeles due to the ease of tissue sampling and animal handling. 
Studies that have focused on the regeneration and repair of the heart have not used the same approach that we propose 
– combining immunohistochemistry, cellular mitogenic response and cellular morphology to identify robustly 
regenerating axolotl cardiac tissue for next-generation sequencing studies. Past studies have relied on observational 
studies of regeneration, rather than the mechanisms that regulate and control its expression. 
Many reviews in the field of regenerative biology and medicine have called for greater understanding of the molecular 
pathways that drive cardiac regeneration to help serve as the platform for understanding outcomes of prior pre-clinical 
and clinical human studies of cardiovascular diseases and to drive future experiments in understanding cardiac tissue 
repair. Some investigators have attempted stem-cell therapies in human patients using data from murine studies; 
however, due to the lack of standardized protocols of stem cell isolation/cultivation and/or stem cell administration and 
dosing schedules, the results of these clinical trials have been mixed. We would like to elucidate the exact spatiotemporal 
gene expression cascade in animals with robust cardiac tissue regeneration in order to understand what proteins, 
signaling molecules and receptors play a role and when they are needed in order to reawaken cardiac tissue regeneration 
in mammals. 

 
15. Indicate the METHOD used to determine the group size of animals needed for this study. 

 
Note:  The Guide states that whenever possible, the number of animals requested should be justified statistically.  A power analysis 
is strongly encouraged to justify group sizes when appropriate.  Please provide this information. 

a. [  ] Group sizes determined statistically.  State what statistical analysis was performed and give the power function.  The variance 
may be estimated from similar previously published studies.  Software such as that available at www.poweranalysis.com or 
www.statistics.com may be helpful. 

N/A 

 

b. [  ] Group sizes based on quantity of harvested cells or amount of tissue required.  Elaborate.  (Note:  A statement such as “The 
study requires 50 experiments” is not sufficient.) 

N/A 

 

c. [X] Pilot study or preliminary project, group variances unknown at present. Minimal number of animals should be requested. 
You must provide justification for the number of animals you are requesting. State the basis for your request.  

This protocol is piloting a novel model of inducing cardiac ischemia. Through this study, we will be honing techniques to increase 
the post-operation survivability of the animals and to determine the overall rate of mortality due to complications from 
ischemia/reperfusion. A total of 5 of each animal species will be needed to practice techniques, while 10 will be used to determine 
the feasibility of the mechanical clamping method to induce ischemia, determine the minimum clamping time to ensure a minimum 
volume of ischemic tissue and to calculate the post-operative mortality rate. The total number of animals required for the pilot 
study is 15. 

 

d. [  ] Other – Elaborate and justify criteria used to determine group size.  

N/A 

 

V. – ANIMAL SUBJECTS (NUMBER, HOUSING AND CARE) 

 

Please review the detailed Explanation of USDA Reporting Codes. 

Brief examples:  
Category B:  Animals being bred but not used for experimental purposes. 
Category C:  Experimental animals that will experience no pain or distress. 
Category D:  Experimental animals where anesthetic or analgesic agents are used to avoid pain or distress. 
Category E:  Experimental animals where anesthetic or analgesic agents cannot be used to avoid pain or distress. 
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NUMBER OF ANIMALS - If this is an initial submission of a multi-year grant beyond the three year protocol period, all the work and 
number of animals must be included in this protocol application.  For all other submissions, list the total number of animals to be used 
over the 3 YEAR PERIOD of this protocol (or for the life of the project if less than 3 years)  
 
16. Indicate how the total number of animals needed for this study was reached for each USDA category (group size X groups in 

each experiment X number of experiments).  Provide the number and type of experimental and control groups in each 
experiment, the number of experiments planned, and the number of animals in each group.  Include all animals in each USDA 
category, including those that will be needed for training and those that will be culled.  

 The number and category of animals in this section must match the animal tables below (17, 18, 19). 

 DO NOT cut and paste your experimental aims from your grant proposal.  

 Details of each procedure are to be described in the appropriate questions (33, 34 and/or 35), NOT here. 

 

Surgical Technique Study: 
This group will be used to test intubation equipment and surgical tools for thoracotomy. 
Axolotl (Ambystoma mexicanum) – Group Size (n=1) X Groups / Experiment (g = 1) X Number of Experiments = 1 X 1 X 5 = 5 
Mice (Mus musculus) – Group Size (n=1) X Groups / Experiment (g = 1) X Number of Experiments = 1 X 1 X 5 = 5 
 
Ischemia Model Pilot Study: 
This group will be used to validate the mechanical clamping methodology of inducing ischemia in the animal models. 

Axolotl (Ambystoma mexicanum) – Group Size (n=1) X Groups / Experiment (g = 1) X Number of Experiments = 1 X 1 X 14 = 10 
Mice (Mus musculus) – Group Size (n=1) X Groups / Experiment (g = 1) X Number of Experiments = 1 X 1 X 10 = 10 
 
Analgesia Sub-Study: 
This sub-study will be used to identify the optimal analgesia dosing and determine, whether, and to what degree, opioid analgesics 
affect tissue healing and regeneration in a surgical model in axolotls. 
Experiment 1: 6 axolotls/group x 2 groups = 12 axolotls 
Experiment 2: 6 axolotls/group x 6 drug/dose groups (Re-use 12 animals from Experiment 1 + 24 additional animals) 
Experiment 3: 6 axolotls/group x 3 groups (Re-use 12 animals from the low dose groups in Experiment 1 + 6 additional axolotls for 
no the analgesic group) 
Experiment 4: 6 axolotls/group x 3 groups x 3 sample endpoints (12h, 2d and 7d) = 54 animals 
Total Animals = (12 + 24 + 6 + 54) x 10% (unexpected attrition) = 106 
 
Ischemia Study: 
Axolotl (Ambystoma mexicanum) – Group Size (n=6) X Sample Endpoints (s = 5) = 6 X 5 = 30 
The 5 group endpoints are: 12h, 2d, 7d, 30d, and 90d. 
To account for 10% unexpected losses (i.e. sudden cardiac death): Total = 30 + (0.10 * 30) = 33 animals 
 
If applicable, the results from the 12h, 2d, and 7d endpoints from the Analgesia Sub-Study can be used to reduce the total number 
of animals that need to be used. 
 
Mice that have been identified for euthanasia can be transferred from other PIs/Protocols/DLAR VTS (using source transfer) to be 
used in acute surgical practice procedures. Also, retired breeders can be ordered as outlined in Question 17 to be used in acute 
surgical practice procedures. 

 
17. Animals to be PURCHASED from an approved vendor: 

 Not Applicable 

 

SPECIES, STRAIN, SEX, AGE/WEIGHT 
State nomenclature of genetically 

engineered (GE) or mutant rodents 

NUMBER OF ANIMALS TO BE 
USED UNDER USDA CATEGORY 

SOURCE 
Vendor (include stock/catalog 

number for transgenics) 

HOUSING LOCATION 
Building 

B C D E 



www.manaraa.com

231 

 

Axolotl (Ambystoma mexicanum) 
Phenotype: Wild-type / Mutation: None 
Sex: Male & Female 
Age: Juvenile (8-10m) or older 

0 0 107 14* 

Ambystoma Genetic Stock 
Center (Lexington, KY). 
No stock number; use 
phenotype description. 

Gordon Scott Hall 
Building 
IBIO Building 

Mice (Mus musculus) 
Strain: C57BL/6J 
Sex: Male & Female 
Age: Adults (3-5 m) 

0 0 19 9* 

The Jackson Laboratory 
Harlan, Taconic 

Gordon Scott Hall 
Building 
IBIO Building 

Mice (Mus musculus) 
Strain: C57BL/6J 
Sex: Male & Female 
Age: Retired Breeders 

0 0 15 0 

The Jackson Laboratory 
Harlan, Taconic 

Gordon Scott Hall 
Building 
IBIO Building 

 
18. Animals to be TRANSFERRED FROM an expiring WSU protocol and/or SHIPPED FROM another institution. 

X Not Applicable 

 
SPECIES, STRAIN, SEX, AGE/WEIGHT 

State nomenclature of GE 
or mutant rodents 

NUMBER OF ANIMALS TO BE 
USED UNDER USDA CATEGORY 

SOURCE 
IACUC protocol number 

(or PI & Institution) 

WSU HOUSING 
LOCATION 

Building B C D E 

Mice (Mus musculus), C57BL/6J, Sex: 
Male, Age: Adults (3-5 m) 

0 0 1 1 
WSU IACUC Protocol: 
A 06-13-13, A 08-04-14 

Elliman DLAR 

 

 I will contact DLAR Hospital (577-1343) regarding shipping arrangements and quarantine requirements. 

*If animals are shipped/transferred TO OTHER INSTITUTIONS, the request must be submitted prior to shipment as an amendment to 
the protocol and DLAR must be contacted for shipping arrangements. 
 
19. OFFSPRING/FETUSES/EMBRYOS OBTAINED FROM ARRIVING PREGNANT DAMS OR FROM IN-HOUSE BREEDING: Accurate 

records of the number of animals produced and their ultimate disposition are required 

 Not Applicable 

 
SPECIES, STRAIN and SEX 

State nomenclature of GE 
or mutant rodents 

NUMBER OF ANIMALS TO BE 
USED UNDER USDA CATEGORY 

HOUSING LOCATION 
Building 

B C D E  

N/A N/A N/A N/A N/A N/A 
*All animals bred in-house must be included in this table, including any excess or unsuitable animals that may not be used for 
experiments.  If this protocol involves complicated breeding you may want to submit a flowchart with your application to more clearly 
explain the animal numbers listed in the tables above; examples can be found on the IACUC website under Helpful Links. 
 
20. USDA CATEGORY E: Identify the condition that places the animals in Category E and provide scientific justification for 

withholding alleviation of pain/distress.  Describe any non-pharmaceutical methods that will be used to minimize pain and 
distress. 
NOTE: If animals may die as a result of experimental procedures (e.g., infectious disease or oncology studies), or because an 
endpoint is used that allows the animals to experience significant pain or distress, justify why an alternate endpoint (e.g., weight 
loss, clinical signs, tumor size) cannot be used prior to death or pain or distress. 

 

 Not Applicable 

 

The proposed surgical procedures (induced myocardial ischemia using a mechanical clamping method) can lead to all of the standard 
sequelae of myocardial remodeling after myocardial infarction (MI). Sudden death due to rupture of the ventricular free wall and/or 
deadly arrhythmias are common complications in mammals post-MI. One of the first studies describing the LAD ligation/reperfusion 
model in mice reported a 23-38% mortality rate in their various subgroups [15]. Although we will monitor the animals frequently 
during the postoperative recovery period, there may be animals that die without intervention. Thus, since we are proposing a new 
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methodology to induce cardiac ischemia, we will use a worst-case mortality rate of 40%; the projected rate of 4/10 mice may expire 
due to sudden death from complications of MI. 
In order to show any difference in reducing pain, a groups of animals (n=6) in the antinociceptive pilot study must not receive any 
treatment to reduce pain and suffering. This is necessary in order to create a clinical baseline of behavior secondary to nociception in 
order to ascertain if the experimental treatments have any clinical antinociceptive effect in the treated animals. 

 
21. Breeding: Will animals be bred in-house? 
 

X NO 

 

 YES* 
*All animals bred in-house must be listed in the “offspring table” (#19), including any excess or unsuitable animals that will not be used for 
experiments 

a. Review the Rodent Breeding and Weaning Policy and complete the table below.  
 

 Pair mating  Breeders replaced after 6 months  Pups weaned at 21 days 

 Trio mating  Breeders replaced after 12 months  Other (describe below): 

 Other (describe below):  Other (describe below):   

 

N/A 

 
22. Rodent Identification Method (e.g. ear punch, tattoo, ear notch) See Rodent Identification for guidance. 
 

 None 

X 
List: Ear Tag, Ear Punch (If not already sterilized, It is recommended to clean and/or disinfect any ear tags or punches, if at all 
possible, before applying or using.) 

 
 
 Axolotl Identification Method (e.g. ear punch, tattoo, ear notch). 
 

 None 

X 
List: Electronic Identification Transponders [38]. BMDS DAS-7008 Reader and IMI-1000 Transponders, PharmaSeq WA-4000 
Reader and IJ-2010 p-Chips, or other equivalent systems. If housed singly, axolotls can be identified by cage or cage card 
markings. 

 
23. Will Transgenic, Knockout and Knockin animals be used? 
 

X NO 

 

 YES (review the Genetically-Modified Animals Guideline) 

 
a. Describe any special care or monitoring that the animals will require, or need for special breeding systems. 

 No special care required 

 Special care required (describe below) 

 

N/A 

 
b. For each strain: what is the inserted or knocked-out gene (avoid abbreviations; for an inserted gene, indicate the source 

species, wild-type or mutant; if mutant, indicate how) and what is the function of the wild-type gene product? 
 

N/A 
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c. Will these modifications to the genome cause an increased risk for the animal to shed intentionally introduced 
infectious agents, biological toxins, hazardous chemical agents, radioisotopes or create other hazards for the animal 
handlers and research staff? 

 

 NO 

 

 YES  Explain the hazard the animal will present to staff handling the animals and provide safety precautions required  

 to be observed in housing and handling these animals in the space below. 

 

N/A 

 
d. Are two or more different strains of transgenic animals being bred? 
 

 NO 

 

 YES 

 
i. Which strains are being bred? 

N/A 

 
ii. What is the expected biological characteristic(s) or outcome of the novel strain(s)? 

N/A 

 
iii. Will the novel strain(s) pose any additional risks to staff?  If yes, please explain. 

N/A 

 
24. Housing Outside DLAR Facilities:  Will animals need to be maintained outside the DLAR facilities for more than 12 hours?   
 

X NO 

 

 YES (Review Overnight and Long-Term Housing of Animals in Investigator Laboratories) 
 

 Short Term (>12 Hours but ≤7 Days) 

 Long Term (>7 Days) 

 
Building:  
Room:  

 

 DLAR will provide all husbandry and oversight.* 

 DLAR and PI will share the responsibilities for husbandry and oversight.* 

 PI will be responsible for all husbandry and oversight.  Provisions for care and housing, animal monitoring  

 and environmental monitoring will meet or exceed standard DLAR SOPs.* 
  

 
*All outside housing requests require a Husbandry Agreement between the DLAR and PI.  A signed agreement must be 
submitted prior to protocol approval. 

 
a. How long will the animals be maintained outside the DLAR facilities? 

 

N/A 

 
b. Justify why is it necessary to house animals outside of the regular DLAR animal facilities. 
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N/A 

 
c. If DLAR will not provide all the husbandry and oversight, identify the person(s) who will provide the care of the animals 

while they are outside of the DLAR facilities. 
 

N/A 

 
25. Caging Requirements 
 

X Standard housing (appropriate for species, including sterile for immunocompromised animals) 

X Special housing needs required (e.g. suspended wire mesh flooring, non-standard size) Requires justification, describe below: 

 

The axolotls (Ambystoma mexicanum) require special aquatic housing (Holtfreter’s solution and regular changes). Standard 
operating procedures will be filed with DLAR personnel. See SOP No. 02.19.01. 

 
26. Social Housing:  The Guide states: “Single housing of social species should be the exception and justified based on experimental 

requirements or veterinary-related concerns about animal well-being.” 
 

X Standard social housing 

X Singly housed (justify below and include duration of time animal will be singly housed): 

 

Axolotl (Ambystoma mexicanum) – It is preferred to house adult axolotls individually, especially adult males. If necessary, groups 
of two or three adult females (in containers having enough 50% Holtfreter’s solution per animal to cover their gills and heads 
without the animals having to actively submerge their bodies) can be housed in appropriately sized containers. Adolescent and 
juvenile axolotls MUST be housed singly as they may nip at the limbs of their neighbors. 
Mice (Mus musculus) – Standard social housing. 

 
27. Environmental Enrichment: The Guide states: “The primary aim of environmental enrichment is to enhance animal well-being 

by providing animals with sensory and motor stimulation, through structures and resources that facilitate the expression of 
species-typical behaviors and promote psychological well-being through physical exercise, manipulative activities, and cognitive 
challenges according to species-specific characteristics” 

 
 

X 
Species-specific enrichment will be provided (see Environmental Enrichment and Behavioral and Social Management of 
Research Animals Policy/Guideline) 

X Enrichment will either not be provided or will vary from the IACUC Policy (justify below) 

 

Axolotls shall be housed in plastic tubs/mouse polys without sand/pebbles or other small additions/decorations for enrichment. 
These can be ingested and cause GI complications Axolotls are known to be sedentary, especially in the low-temperature of the 
50% Holtfreter’s solution and small container sizes used in research laboratories. Mouse tunnels/houses (PVC/plastic or equivalent) 
that are large enough for the axolotl to fit shall be added into the plastic tub/mouse poly for environment enrichment. Tunnels can 
be removed during periods of video recording and behavioral assessment. 

 
VI. – PROCEDURE DETAILS 

 
28. Location(s) use and detail.  
 

a. List the location(s) where the procedures will be performed. 
 
In DLAR facilities 

X Building: Gordon Scott Hall Building, IBIO Building 
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Axolotl and mouse survival surgery and terminal procedures will be performed in the procedure rooms of the DLAR facilities 
in Scott Hall’s or IBIO’s basement. 
In Research Lab(s) 

X Building(s): Gordon Scott Hall Building, IBIO Building 

 Room(s): 3323 (Scott Hall), 6213 (Scott Hall) 1310 (IBIO) 
Axolotl and mouse survival surgery and terminal procedures will be performed in the Sponsor’s or Advisor’s laboratories in 
the Gordon Scott Hall Building, Room 3323/6213 or IBIO Building, Room 1310. 
b. Will animals be transported between buildings for procedures? 

 NO 

X YES* 

*A Transportation of Animals Attachment must be submitted with this protocol to transport animals between buildings. 

 
c. Will photographs and/or videos of animals be taken in an animal holding facility (i.e. DLAR)? Review the Security 

Policy/Guideline. 

 NO 

X YES, list building and room number(s) and describe: 

 
Gordon Scott Hall and/or IBIO DLAR Facility – Pictures of axolotls used to practice surgery will be taken to help catalog 
and annotate procedures in appropriate laboratory notebook(s). 

 
29. List all procedures to be performed on animals:  (Check boxes that apply) 
 

X USE OF ANESTHETIC, ANALGESIC, OR TRANQUILIZING AGENTS (animals will be in USDA Category D) 

 

X SURGERY  INOCULATION WITH CELLS, TISSUES, OR 

  X Non-survival  BODY FLUIDS 

   Survival minor    Tumor Induction 

  X Survival major    Tumor Transplantation 

   Multiple survival    Acute Injections (other than anesthetic agents) 

   Multiple major survival    Chronic Injections (other than anesthetic agents) 

        

X ADMINISTRATION OF STUDY DRUGS,      

 HORMONES, CHEMICALS, OR CYTOTOXIC   BLOOD COLLECTION* 

 SUBSTANCES1    *for procedures other than antibody production 

   Oral Gavage     

   Addition to food or water supply X FOOD AND/OR WATER REGULATION (RESTRICTION) 

  X Acute Injections (other than anesthetic agents)     

   Chronic Injections (other than anesthetic agents)  BREEDING OF ANIMALS 

  X Other(s)    Genotyping of Rodents 

   List: 5-Bromo-2’-Deoxyuridine (BrdU)     

  X OTHER PROCEDURES NOT LISTED 

 PROLONGED RESTRAINT   X Tissue Harvesting 

     Behavioral Testing 

 ANTIBODY PRODUCTION    Bone Marrow Transplantation 

   Monoclonal    Nutrition Trials 

   Polyclonal    Neurological Impairment 

     Trauma (bone, brain, spinal cord, etc.) 

 HOUSING OUTSIDE OF DLAR ANIMAL FACILITIES2    List: 

   Short-Term (>12 Hours but ≤7 Days)   X Imaging / Scans (CAT, MRI, MRS, PET, etc.) 

   Long-Term (>7 Days)    List: Echocardiography 

     Other(s) 

     List: 
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1 Review the Administration of Substances: Maximum Volumes and Other Recommendations SOP. 
2 A Husbandry Agreement between the DLAR and PI is required. 
 
30. State the period of time animals will be allowed to acclimate following arrival at WSU and prior to the initiation of 

experimental or breeding procedures (Review the Acclimation of Animals Guideline). 

Axolotl (Ambystoma mexicanum) – 5-7 days for acclimation. 
Mice (Mus musculus) – 2 days for acclimation. 

 
31. Schedule of procedures for experimental groups:  State or list in chronological order all procedures for each experimental 

group, their frequency, and time points over the course of the experiment.  Details of each procedure are to be described in the 
appropriate questions (31, 32 and/or 33), NOT here.  A diagram or chart may be helpful to explain complex designs. 

 

Establishment of surgical best practices and ischemia model development in axolotls: 
Day -5 to -7: Axolotls arrive in facility 
Day -1: Axolotls begin fast. Perform baseline echocardiography. 
Day 0: Axolotls are micro-chipped (if available) and undergo survival surgery 
Day 0-2: Postoperative monitoring 4x daily for axolotls remaining in cohort 
Days 1, 3, 5*, 7*, 9*, 11*, 13*, 15*, 17*, 19*: One axolotl in cohort is euthanized each day to harvest heart for histology studies. 
*If animals die due to sudden death (see Question 20 for details), these sampling days may not apply. 
Per Question 16, the schedule of procedures pertains to 10 total animals to develop the ischemia model. One animal (group size = 
1) per day (total experimental days = 10) will be euthanized per the schedule above, to give a total of 10 axolotls for this portion of 
the pilot study. 
Optional: Perform echocardiography as needed to assess cardiovascular function prior to harvesting heart for downstream studies. 
 
Establishment of surgical best practices and ischemia model development in mice: 
Day -2: Mice arrive in facility 
Day -1: Perform baseline echocardiography. 
Day 0: Mice are ear tagged and undergo survival surgery 
Day 0-2: Postoperative monitoring 4x daily for mice remaining in cohort 
Days 1, 3, 5*, 7*, 9*, 11*, 13*, 15*, 17*, 19*: One mouse in cohort is euthanized each day to harvest heart for histology studies. 
*If animals die due to sudden death (see Question 20 for details), these sampling days may not apply. 
Per Question 16, the schedule of procedures pertains to 10 total animals to develop the ischemia model. One animal (group size = 
1) per day (total experimental days = 10) will be euthanized per the schedule above, to give a total of 10 mice for this portion of 
the pilot study. 
Optional: Perform echocardiography as needed to assess cardiovascular function prior to harvesting heart for downstream studies. 
 
Determination of optimal analgesia dosing in a surgical model in axolotls: 
Days -5 to -7: Axolotls arrive in facility 
Day 0: Axolotls are micro-chipped (if available) and are assessed for baseline pain response using qualitative and quantitative 
measures. 
Days 1-2+: Experiment 1 – Validate quantitative methods using naïve animals. In this experiment, cage-side assessments [von Frey 
(vF) testing or acetic acid testing (AAT)] will be performed to establish a baseline pain response. Tests are repeated at least twice 
per day for a least two consecutive days. 
Days 3-8+: Experiment 2 – Using validated quantitative methods, determine optimized analgesic doses. In this experiment, evaluate 
the effects of different doses of butorphanol and buprenorphine on quantitative and behavioral parameters (see [39]). Six animals 
will be assigned to each analgesic group, buprenorphine or butorphanol (low [L], medium [M], or high [H] dosage). 
 

Table 1: Study schedule for each dose (L, M, and H) in Experiment 2. 

Test 
Baseline Analgesia Assessments Analgesia Assessments 

-24h 0h 1h 6h 12h 24h 25h 31h 36h 48h 120h 

Quantitative test 
(vF or AAT) 

✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 



www.manaraa.com

237 

 

*Two measures in 24 hours 
Buprenorphine Doses: L = 25 mg/kg, M = 50 mg/kg, H = 75 mg/kg 
Butorphanol Doses: L = 0.25 mg/L, M = 0.50 mg/L, H = 0.75 mg/L 
 
Notes: 

• Medium (M) dose listed above is based on published newt study [39]. 

• When animals are used in more than one experiment, they will be provided a minimum of 1-week washout between 
treatments and must return to baseline behavior. 

• If an analgesia dose does not provide coverage for a full 24 hours, with the guidance of the veterinarians, consider re-
dosing the analgesia every 6-12h over each 24-hour period before moving to a higher base dose. 

• If adverse effects (e.g. GI motility issues) are evident, continue testing at a lower dose if statistical analyses show there is 
a significant difference (clinically or statistically) in nociceptive threshold between the treated and untreated groups. 

• If adverse effects (e.g. GI motility issues) are evident, consider diluting the dose of analgesia using an appropriate 
vehicle. Dilute to a maximum volume of 25 mL/kg [40]. 

 
Interim Results: Adverse GI motility effects observed in one of the testing groups. Will continue testing as described above. 
 
Days 9-19+: Experiment 3 – Evaluate optimal analgesic dose in a surgical model in axolotls. Three surgical groups of animals (6 per 
group, receiving either butorphanol, buprenorphine, no analgesic) will undergo mechanical induction of cardiac ischemia. Using 
data from Experiment 2, animals will receive optimized analgesic doses. The same evaluation criteria and schedule (behavioral and 
quantitative methods) that were used in Experiment 2 will be used in Experiment 3, however the 0-hour time point will be 
designated as the point of recovery from anesthesia. Axolotls begin fast 1 day before survival surgery; perform baseline 
echocardiography at this point as well. 
Days 20-27+: Experiment 4 – Compare the histologic differences in healing response after mechanically inducing ischemia in an 
axolotl heart, with and without the administration of opioid analgesia. Three surgical experimental groups (buprenorphine, 
butorphanol, and no analgesia) of naïve axolotls will undergo mechanical induction of cardiac ischemia using the same doses 
utilized in Experiment 3. Axolotls begin fast 1 day before survival surgery; perform baseline echocardiography at this point as well. 
Each experimental group will consist of 18 animals; 6 will be humanely euthanized at each of three post-operative time points (12 
hr, 2 days, 7 days). These time points were selected based upon observations from pilot studies we have performed examining 
cardiac histology in axolotls following mechanical ischemic injury. Following euthanasia, cardiac tissue will be collected for 
histologic processing and analysis. Quantitative and behavioral assessments will be performed as described in Table 2 for each 
group as allowed until the time of euthanasia. 
Optional: Perform echocardiography as needed to assess cardiovascular function prior to harvesting heart for downstream studies. 

Cageside ✓  ✓ ✓   ✓ ✓    

Video  ✓ (x2)*  ✓  ✓ ✓   ✓ ✓ ✓ 

Feeding ✓   ✓    ✓    

 
32. NON-SURGICAL PROCEDURES 
 
a. Tumor growth in rodents 
 

X Not Applicable 

 SOP for Monitoring Tumor Growth in Rodents will be followed. 

 SOP will not be followed.  Describe variance from SOP and justify below.  

 

N/A 

 
b. Prolonged Restraint (does not include brief restraint for the purpose of performing routine clinical or experimental procedures).  

The Guide states that “Prolonged restraint, including chairing of nonhuman primates, should be avoided unless it is essential for 
achieving research objectives and is specifically approved by the IACUC.”  Prolonged restraint must be justified with appropriate 
oversight to ensure it is minimally distressing. Describe any sedation, acclimation or training to be used. 

 

X Not Applicable 
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 Describe and justify below.  (Review the Prolonged Physical Restraint Policy) 

N/A 

 
c. Food/Water Regulation (Restriction) The Guide definition: “The regulation process may entail scheduled access to food or fluid 

sources, so an animal consumes as much as desired at regular intervals, or restriction, in which the total volume of food or fluid 
consumed is strictly monitored and controlled.”  Describe the method for assessing the health and wellbeing of animals.  Amount 
of food and/or water earned during testing and amount freely given must be recorded and assessed to assure proper nutrition. 

 

 Not Applicable 

X Describe and justify below. (Review the Food/Water Restriction or Regulation Policy/Guideline) 

 

Prior to axolotl survival surgery, a 24-hour fast is necessary [40-42] in order to reduce the coelom volume to allow space for moving 
internal organs during surgery. Since axolotls only eat every other day, it should not be stressful to go up to 24 hours without food. 
Due to their metabolic rate and surface area to volume ratio, a fast is not recommended prior to mice survival surgery [22,24]. 

 
d. Rodent tail biopsy 
 

X Not Applicable 

 Policy/SOP for Rodent Tail Biopsy will be followed. 

 SOP will not be followed.  Describe variance from SOP and justify below.  

 

N/A 

 
e. Rodent toe clipping 
 

X Not Applicable 

 Policy/SOP for Rodent Toe Clipping will be followed; justification is required, include below. 

 SOP will not be followed.  Describe variance from SOP and justify below.  

 

N/A 

 
f. Blood collection 
 

X Not Applicable 

 
List the site, method of collection (include the needle gauge), frequency, and volume needed at each time point: 
 

N/A 

 

 SOP for Blood Collection: Maximum Volumes and Fluid Replacement will be followed.  

 Blood collection will exceed guidelines. Justify below. 

 Blood collection takes place at the time of euthanasia (e.g. cardiac puncture) 

 

N/A 

 
g. Use of Non-Pharmaceutical Grade Compounds – Identify any non-pharmaceutical grade (neither human nor veterinary) drugs, 

biologics or reagents that will be administered to animals.  Provide scientific justification for their use and describe methods that 
will be used to ensure appropriate preparation and administration.  Please review the Use of Non-Pharmaceutical Grade Drugs 
Policy. 

 

 Not Applicable 
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Pentobarbital (commercial preparation Nembutal®) is now considered logistically unavailable by the NIH Office of Laboratory Animal 
Welfare (OLAW). Per the IACUC Policy “Use of Non-Pharmaceutical Grad Drugs”, the use of compounded pentobarbital for anesthesia 
is considered acceptable. For this protocol, compounded pentobarbital will be purchased from specialty pharmacies currently selling 
to other PIs at WSU. 
5-Bromo-2'-deoxyuridine (i.e. BrdU / Br-dU / BUdR / 5-BrdU / 5-Bromodeoxyuridine, CAS 59-14-3) is a commonly used complex biologic 
that is used to study cellular division and proliferation in research environments. Since it is incorporated into DNA, it is considered a 
mutagen and carcinogen. An Animal Hazardous Agent Form shall be prepared for DLAR staff and a Laboratory Specific Standard 
Operating Procedure shall be created for laboratory staff using information from the BrdU MSDS. This will ensure the safe handling, 
preparation, and administration of the compound. 

 
33. DESCRIBE ALL NON-SURGICAL PROCEDURES: Summarize in a narrative what procedures will be done with each species. Include 

only those experiments where animals are directly involved.  When animals are used as donors of organs, tissues, or cells, only 
describe how the organs, tissues or cells will be obtained.  Do not describe what will be done with those organs, tissues or cells 
once they have been removed from the animal. 

 

 NOT APPLICABLE 

 
a. Describe every procedure. 
 

Axolotl (Ambystoma mexicanum) 
Operators must always wear powder-free latex or nitrile gloves when handling axolotls. For the purposes of this protocol, 
no axolotls are planned to be bred for colony stabilization. All animals will be purchased from the Ambystoma Genetic 
Stock Center (AGSC) located in the Department of Biology at the University of Kentucky (Lexington, KY). 
Identification procedures for the axolotl will follow best practices as described in [38]. Due to their robust regeneration 
capability, any method involving toe clipping, limb punching or limb notching is impractical. Additionally, as axolotls 
continually slough off their skin, tattoos quickly disappear. The best choice is the use of a subcutaneous transponder, a.k.a 
microchip. Systems from BMDS (DAS-7008 Reader and IMI-1000 Transponders), PharmaSeq (WA-4000 Reader and IJ-2010 
p-Chips) or other equivalent systems. The preferred site is a subcutaneous placement, parallel to the tail fin, 2.5 – 3.0 

centimeters posterior to the head. For consistency, tags will be placed over the right shoulder area as shown in Figure 1. 
The procedures described in [38] use an ice bath as an anesthetic to reduce pain and suffering of the animals. To further 
prevent additional pain to the animal, the transponders will be inserted while the axolotls are under anesthesia, prior to 
starting the cardiac survival surgery. 
Detailed Procedures: 
1. Ensure the axolotl is at the appropriate depth of anesthesia. 
2. Take a sterile, disposable needle/transponder assembly from the package and inject transponder as shown in Figure 

1. Dispose of used needle/transponder assembly in appropriate container. 
3. Briefly massage the injection site with gloved finger to help approximate the skin edges. 
4. Dab injection site with dry gauze to remove excess moisture. 
5. Place topical tissue adhesive (GLUture, Abbott Laboratories, cat. no. 32046 or equivalent) on injection site. 
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Figure 1: Injection Site and Resulting Location of Microchip Transponder 

Analgesic Sub-Study 
1. Two antinociceptives will be compared, with doses established in newts [39] as a starting point. The sample size of n = 

6 animals per group was determined by assuming an  = 0.05 and a  = 0.05 in sample size calculations while 

estimating a large effect size ( = 0.25 for laboratory-bred animals and assuming there will be clear behavioral 
differences in animals with and without antinociceptives [43]). The treatment and control groups are listed below: 
a. Surgery (Mechanically Induced Ischemia) + Buprenorphine 
b. Surgery (Mechanically Induced Ischemia) + Butorphanol 
c. Surgery (Mechanically Induced Ischemia) + No Antinociceptive 
d. Anesthesia + Buprenorphine – If little to no differences are seen in the surgery arms, animals that are treated 

with anesthesia and buprenorphine alone can be used to establish another control arm for comparison. 
e. Anesthesia + Butorphanol – If little to no differences are seen in the surgery arms, animals that are treated 

with anesthesia and butorphanol alone can be used to establish another control arm for comparison. 
f. Optional: Anesthesia Alone – If little to no differences are seen in the surgery arms, animals that are treated 

with anesthesia alone can be used to establish another control arm for comparison. 
g. Optional: Complete Control – Each animal can be observed before any procedures are performed or 

pharmacological agents are administered, serving as its own control. Completely naïve (throughout the study) 
animals can be used as optional controls. 

h. Buprenorphine shall be administered as an intracoelomic (IC) injection; administer up to 1h prior to surgery. 
1.h.1. The best point of intracoelomic administration is just in front of a hind leg, approximately parallel to the 

body and about midway between the dorsal and ventral surfaces: that is, dorsal to the bladder and ventral 
to the kidneys and caudal enough to prevent injecting into the liver or spleen. 
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Figure 2: Diagram of major axolotl organs 

 
1.h.2. To facilitate the IC injection into the animal, the axolotls can be placed into a state of anesthesia induction 

or even into a light plane of anesthesia before injecting buprenorphine. 
Induction Light Anesthesia Deep (Surgical) Anesthesia 

• Decreased gular movement 
• Diminished withdrawal reflex 

• Loss of righting reflex 
• Absence of abdominal respirations 

• No withdrawal reflex (toe pinch) 
• Gular movements cease 

i. Butorphanol shall be administered directly into the 50% Holtfreter’s solution of the animal’s cage up to 1h 
prior to surgery. 

2. Buprenorphine (Penro Specialty Compounding, Colchester, VT) shall be administered at one of three doses (low=25 
mg/kg, medium=50 mg/kg, high=75 mg/kg) as an intracoelomic (IC) injection every 24-hours for 48 hours. 
Butorphanol (MWI Veterinary Supply, Boise, ID) shall be administered at one of three concentrations (low=0.25 mg/L, 
medium=0.50 mg/L, high=0.75 mg/L) directly into the 50% Holtfreter’s solution of the animal’s cage every 24-hours 
for 48 hours. The medium dose is based upon a published dose [39] that was effective in newts and the low and high 
doses are 50% lower or higher, respectively. 

3. When animals are used in more than one experiment, they will be provided a minimum of 1 week washout between 
treatments and must return to baseline behavior. 
a. If an analgesia dose does not provide coverage for a full 24 hours, with the guidance of the veterinarians, 

consider re-dosing the analgesia every 6-12h over each 24-hour period before moving to a higher base dose. 
 
Behavioral Parameters For Analgesic Assay 
1. Changes in behavior will be monitored to assess the efficacy of the antinociceptives. The following behaviors shall be 

monitored: 
a. Feeding: At least one week of feeding behavior should be collected to establish a baseline food intake. 

Individual variability has been observed during the husbandry of the first cohort of axolotls. Thus, not only will 
animal feeding behavior be compared to a control, it shall be compared to the animal’s own pre-experiment 
intake baseline. Food intake will be quantitatively assessed at each feeding post-surgery for changes between 
each group. The axolotls will be offered food daily post-surgery to assess feeding behavior. The animals will be 
weighed 3 times a week at cage change to assess changes. 

b. Cageside Assessments: The animals will be assessed at least twice daily cageside. This assessment will 
determine if there are behavioral changes based on analgesic administration post-surgery. This will continue 
for up to 48 hours after surgery. Assessment methods may include observing body posture, spontaneous 
movement, responses after gently tapping on cage, squirting 3-5 mL of water from a syringe into the water 
surface to assess response to water disruption, touching the animal, or placing a novel object into the cage 
and assessing movement away from the object. 
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1.b.1. One or more of the following techniques may be used (depending on response). These techniques may be 
implemented prior to surgery to determine which will be the most effective at eliciting a response. 

1.b.1.1. Movement after Tapping on Cage: Twice daily cageside observations for 3 days prior to procedures 
can be recorded to establish a self-control baseline. The cageside observer shall gently tap on the 
cage a few times and record any responses. 

1.b.1.2. Movement after Creating Gross Water Movement: Twice daily cageside observations for 3 days prior 
to procedures can be recorded to establish a self-control baseline. Gross water movement stimulates 
axolotls’ mechanoreceptive neuromasts that run along the sides of their bodies. Creating gross water 
movement by injecting 3-5 mL of fresh 50% Holtfreter’s solution nearby an animal (e.g. using a 
serological pipette) should stimulate the neuromasts, eliciting a response. 

1.b.1.3. Movement When Touched: Twice daily cageside observations for 3 days prior to procedures can be 
recorded to establish a self-control baseline. The cageside observer shall gently touch the back or tail 
of each animal and record any responses. 

1.b.1.4. Movement in response to novel object: A novel object will be placed in the cage and the animals 
escape behavior monitored.  

c. Animals may be videotaped for intervals of time throughout the recovery period to assess spontaneous 
movement and behavioral signs of stress/pain. The videos will be maintained by the laboratory and only 
individuals involved in the project will have access. 

1.c.1. Body Posture/Stance and Spontaneous Movement: At least one hour of video can be collected or twice 
daily cageside observations for 3 days prior to procedures can be recorded to establish a self-control 
baseline. Behavior such as tail curling, gill position, any abnormal signs of posture, spurts of movement, and 
any flipping/rolling around their body axes should be noted. 

d. Optional: Stimulation With Von Frey Filaments: This is a non-noxious method to elicit a response to a 
controlled application of force. Von Frey fibers may be used to assess pain response at the incision site and a 
site distant to the incision. This is a novel model and it is not clear whether this species will demonstrate a 
response to the fibers. The Von Frey fibers of various sizes shall be applied once daily starting the day of 
surgery and continuing for 48 hours post-surgery. A baseline assessment would be performed prior to the 
surgical procedure. Each filament will be pressed to the point of bending at the site of evaluation starting with 
the lowest gauge filament. The filaments are increased in size until a response is elicited. At that point the 
experiment is stopped and the gauge recorded. Von Frey fibers have been successfully used to assess 
nociception in frogs. 

1.d.1. Mild restraint of the axolotl shall be required in order to stimulate the ventrally-located wound region. 
Axolotls shall be placed into a colander or mesh-like holder to gain access to their ventral side. Once the 
animal has calmed down and become acclimated to its new environment, the Von Frey filament shall be 
inserted through the mesh and used to stroke the wound area. The animal can be kept moist my spritzing 
with 50% Holtfreter’s solution. 

1.d.2. If the animal does not respond to the Von Frey filament AND does not show signs of stress, testing can 
continue to the next force increment as long as the animal is kept moist. The animal should be returned to 
its cage if it shows continued signs of stress or is in danger of becoming desiccated. 

e. Acetic acid test: Axolotls will be placed in a polypropylene mouse cage with enough 50% Holtfreter’s solution 
to cover half of its body, leaving the dorsal surface above the waterline. The AAT is performed according to 
previously published reports in frogs. Glacial acetic acid is serially diluted to produce 10 dilutions evenly 
spaced on a logarithmic scale. Testing is performed by placing a single drop of the weakest concentration 
acetic acid on the same location described above for the vF Fibers. The animal will be observed for a 
repeatable behavioral response (wiping, turning, escape behavior). If a response is not observed within 5 
seconds the area is rinsed using 50% Holtfreter’s solution. Testing on the opposite side using the next highest 
concentration will occur. The testing continues until the nociceptive threshold is reached which is the highest 
concentration to produce a response. If no response is observed with the highest concentration the 
nociceptive threshold will be designated at at 10, consistent with the highest concentration of acetic acid. 

 
Immunohistochemistry and Standard Tissue Staining Techniques: 
For standard fixation of tissues, animals shall be euthanized as allowed per procedures in “Question 37. Euthanasia 
Methods”. After euthanasia, tissues will be sampled as needed and fixed per protocols defined by our laboratory. 
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For perfusion fixation of tissues, the animals will be properly anesthetized and the perfusion fixation protocol shall be 
followed per “Question 35. Surgical Procedures in Non-Rodents.” 
 
Fixatives: 
10% Normal Buffered Formaldehyde 
1. Use as supplied by manufacturer (Thermo Fisher Scientific, Waltham, MA or equivalent). 
2. To make in lab: 

a. Add 50 mL of 37% formaldehyde to 450 mL of dH20. 
b. Add 3.25 gm Sodium Phosphate, Dibasic (Na2HPO4). 
c. Add 2 gm Sodium Phosphate, Monobasic (NaH2PO4). 
d. Mix well to dissolve salts and store at room temperature. 

 
8% Paraformaldehyde Stock 
1. Use as supplied by manufacturer (Thermo Fisher Scientific, Waltham, MA or equivalent). 
2. To make in lab: 

a. Add 40g paraformaldehyde to 500 mL of dH2O. 
b. Heat the solution to 60-65°C while stirring (do not exceed 65°C; this will affect the performance of the 

fixative). 
c. To clear the solution, reduce heat and slowly add 2-3 mL of 1.0 M NaOH with a dropper. 
d. Filter and store at 4°C for up to 1 month. 

 
4% Paraformaldehyde Fixative 
1. Add equal parts 8% paraformaldehyde stock to 0.2 M sodium phosphate buffer 
2. Note: this fix is best prepared fresh, no more than 72 hours before use. 
 
RNAlater® Fixative 
1. Use as supplied by manufacturer (Ambion, Austin, TX). 
2. Store at room temperature. 
 
Buffers: 
Note: Autoclave buffers if they are to be used during survival surgeries. Non-sterile buffers can be used in terminal 
procedures. 
 
Dilution Buffer for Paraformaldehyder 
0.2 M Sodium Phosphate Buffer, pH 7.7 
1. For the sodium phosphate monobasic stock, add 27.8 g NaH2PO4·H2O (sodium phosphate monobasic monohydrate) 

to 1L dH2O. 
2. For the sodium phosphate dibasic stock, add 28.4 g Na2HPO4 (anhydrous sodium phosphate dibasic) to 1L dH2O. 
3. Add 895 mL of the monobasic stock to 105 mL of the dibasic stock to make 0.2 M sodium phosphate buffer. 
4. Check and adjust pH to 7.7±0.1 as necessary with HCl or NaOH. 
5. Autoclave (if necessary) and store at 4°C 
 
Flushing Buffers 
1X Phosphate Buffered Saline with Heparin and Lidocaine, (~280-315 mOsm/kg) 
1. Combine 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4 and 0.24 g KH2PO4 with 930 mL dH2O. 
2. Add 60 mL of Heparin flush solution (100 USP units/mL). 
3. Add 5 g of lidocaine hydrochloride (CAS 137-58-6 or 6108-05-0, Thermo Fisher Scientific, Waltham, MA or equivalent. 
4. Adjust pH to 7.7±0.1 with HCl and/or NaOH; add dH20 to 1 L. 
5. Autoclave (if necessary) and store at 4°C. 
 
Amphibian Ringers Solution with Heparin and Lidocaine, (~200-250 mOsm/kg) 
1. Combine 6.6 g NaCl, 0.15 g KCl, 0.15 g CaCl2, and 0.2 g NaHCO3 to 930 mL dH2O. 
2. Add 60 mL of Heparin flush solution (100 USP units/mL). 
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3. Add 5 g of lidocaine hydrochloride (CAS 137-58-6 or 6108-05-0, Thermo Fisher Scientific, Waltham, MA or equivalent. 
4. Adjust pH to 7.7±0.1 with HCl and/or NaOH; add dH20 to bring volume to 1 L. 
5. Autoclave (if necessary) and store at 4°C. 
6. Sterile solution is good for up to 3 months; non-sterile solution can be stored for up to 1 week. 
 
Perfusion Device Setup: 
1. The static pressure of the perfusate determines the speed of perfusion. The static pressure of the solutions must be 

high enough to displace blood, but not much higher than the maximum, natural arterial pressure of the ambulatory 
animal. 

2. The systolic blood pressure of Salamandra salamandra, closely related to the axolotl, is 22 mmHg [44]. To provide an 
equivalent static pressure, the top of the fluid level of the perfusates should be about 25-30 cm above the level of the 
animal’s heart. 

3. Control the perfusate flowrate using a clamp; the source of the perfusate can be controlled using a three-way valve. 
See Figure 3 for an example. 

 
Figure 3: General setup for perfusion fixation. 

 
Echocardiography to Assess Cardiovascular Function: 
1. Begin with a 24-hour fast [40-42] to avoid emesis during anesthesia  
2. Induce an appropriate plane of anesthesia. Place the axolotl in a water bath with 0.1% tricaine methanesulfonate 

(MS-222); depth of surgical plane of anesthesia is determined by the loss of righting reflex, no spontaneous 
movements and no reflex to pain. 

3. Transfer the axolotl to a pan of 0.05% tricaine methanesulfonate (maintenance dose) solution in a dorsal-recumbent 
position. Enough solution shall be placed in the pan to adequately cover the gills. 
a. Option: Cover the animal with Kimwipe™ laboratory tissues or gauze that have been moistened with 50% 

Holtfreter’s solution. Tease away the tissues to expose the area to be examined with the echocardiography 
transducer or probe. 

b. Regularly monitor the depth of anesthesia by testing the pain reflex; additional anesthesia can be achieved by 
placing the animal in a bath of maintenance dose MS-222 solution or squirting 3-5 mL of additional maintenance 
dose MS-222 directly to the gills and the moistened Kimwipes™ laboratory tissues or gauze that cover the animal. 

4. Take heart images using an appropriate echocardiography with the appropriate transducer or probe. Machines 
capable of using very high frequency probes (>30 MHz) can be used if available. Clean the end of the ultrasound 
probe/transducer with isopropyl alcohol or Sporicidin (or equivalent) disinfectant wipes and rinse with distilled water 
before performing a scan. Since axolotl skin is naturally moist and covered by a coat of mucus, the ultrasound 
probe/transducer can be placed directly onto the skin of the axolotl. 
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5. Obtain echocardiograms. If possible on axolotls, attach EKG needle leads in order to allow for electrocardiogram 
gating. 
a. Explore heart structures and acquire images as needed. 

6. Flush any area on the axolotl that was contacted by the ultrasound probe/transducer with 50% Holtfreter’s solution. 
Return the axolotl to a cage of fresh 50% Holtfreter’s solution for recovery. Clean the end of the ultrasound 
probe/transducer with isopropyl alcohol or Sporicidin (or equivalent) disinfectant wipes. Rinse the ultrasound 
probe/transducer with distilled water before performing a subsequent scan. 

 

Mice (Mus musculus) 
For the purposes of this protocol, no mice are planned to be bred for colony stabilization or transgenic mouse development. 
All mice will be purchased from the Jackson Laboratory (Bar Harbor, ME). For the identification of mice, the procedures for 
animal identification in the IACUC SOP – Rodent Identification, listed in Question 22, shall be followed. No deviations from 
the SOP are planned. 

 
Immunohistochemistry and Standard Tissue Staining Techniques: 
For standard fixation of tissues, animals shall be euthanized as allowed per procedures in “Question 37. Euthanasia 
Methods”. After euthanasia, tissues will be sampled as needed and fixed per protocols defined by our laboratory. 
 
For perfusion fixation of tissues, the animals will be properly anesthetized and the perfusion fixation protocol shall be 
followed per “Question 34. Surgical Procedures in Rodents.” 

 
Fixatives: 
The same fixatives outlined for axolotls can be used in mice: 
10% Normal Buffered Formaldehyde 
8% Paraformaldehyde Stock 
4% Paraformaldehyde Fixative 
RNAlater® Fixative 
 
Buffers: 
Note: Autoclave buffers if they are to be used during survival surgeries. Non-sterile buffers can be used in terminal 
procedures. 
Except as listed below, the same buffers outlined for axolotls can be used in mice. 
 
Dilution Buffer for Paraformaldehyder 
0.2 M Sodium Phosphate Buffer, pH 7.4 
1. Prepare basic buffer as listed for axolotls. 
2. Check and adjust pH to 7.4±0.1 as necessary with HCl or NaOH. 
3. Autoclave (if necessary) and store at 4°C 
 
Flushing Buffers 
1X Phosphate Buffered Saline with Heparin and Lidocaine, (~280-315 mOsm/kg) 
1. Combine 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4 and 0.24 g KH2PO4 with 930 mL dH2O. 
2. Add 60 mL of Heparin flush solution (100 USP units/mL). 
3. Add 5 g of lidocaine hydrochloride (CAS 137-58-6 or 6108-05-0, Thermo Fisher Scientific, Waltham, MA) or equivalent. 
4. Adjust pH to 7.4±0.1 with HCl and/or NaOH; add dH20 to 1 L. 
5. Autoclave (if necessary) and store at 4°C. 
 
Amphibian Ringers Solution with Heparin and Lidocaine, (~200-250 mOsm/kg) 
Do not use in mice. 
 
Perfusion Device Setup: 
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1. The static pressure of the perfusate determines the speed of perfusion. The static pressure of the solutions must be 
high enough to displace blood, but not much higher than the maximum, natural arterial pressure of the ambulatory 
animal. 

2. The average systolic blood pressure of C57BL/6J mice is 120±2 mmHg [45]. To provide an equivalent static pressure, 
the top of the fluid level of the perfusates should be about 140-160 cm above the level of the animal’s heart. 

3. Control the perfusate flowrate using a clamp; the source of the perfusate can be controlled using a three-way valve. 
See Figure 3 for an example. 

 
Echocardiography to Assess Cardiovascular Function: 
1. 1. If necessary, induce an appropriate plane of anesthesia. Conscious echocardiograms can be performed if 

appropriately trained (i.e. a user has a WSU DLAR VTS certification card for aseptic axolotl surgery) or under the 
guidance of a trained user (as defined). 
a. Pentobarbital sodium (Target Dose = 70-80 mg/kg; Acceptable Dose Range = 60-90 mg/kg) shall be injected 

intraperitoneally. Use 10-20% of the initial dose for maintenance. 
b. If an inhaled anesthetic is to be used, anesthetize the mouse with isoflurane (3-4% induction, 1-3 % 

maintenance) in 100% oxygen. 
2. Using an animal hair clipper or an appropriate depilatory lotion, remove the hair on the animal’s chest. 
3. Using appropriate methods (e.g. electric warming pad, phase-change heat pad, far infrared heating, or equivalent), 

maintain the mouse core temperature at approximately 37°C. 
4. Place warmed (37°C) echocardiography gel onto the shaved chest of the animal and take heart images using an 

appropriate echocardiography machine. Machines capable of using very high frequency probes (>30 MHz) can be 
used if available. 

5. Obtain echocardiograms. Attach EKG needle leads if needed in order to allow for electrocardiogram gating. 
a. Place the transducer or probe along the long-axis of the left ventricle (LV) and direct it to the right side of the 

mouse’s neck (see Figure 4A). This helps visualize two-dimensional (2-D) LV long-axis. Acquire images as 
needed. 

b. Rotate the transducer or probe clockwise by 90° to visualize the LV 2-D short axis (see Figure 4B). Acquire 
images as needed. 

c. Additional exploration of heart structures can be performed as the operator’s discretion. Acquire images as 
needed. 

6. After all images have been acquired, remove any residual echocardiography gel and return the mouse to a heated 
cage for recovery. 
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Figure 4: Probe placement for basic echocardiography views. 

 

 
b.  How will the animals be monitored for adverse effects?  Describe any likely effects. 
 

The PI shall visit the animals every day to fill out a post-operation monitoring form until the microchip transponder insertion 
site is healed. 
Axolotls and mice will be visually inspected daily for signs of discomfort, stress, pain and injury. Since axolotls are an 
uncommonly used laboratory animal, specific standard operating procedures (SOPs) will be developed (see DLAR SOP 
Axolotl Care, SOP No. 02.19.01) with the AV to ensure DLAR personnel are vigilant to their needs. Synopses for signs of 
distress are listed in Question 36. Any animals that show signs of prolonged discomfort or pain shall be removed from the 
study and treated as needed; if measures become futile, animals shall be euthanized. 

 
c. Fill out the following anesthesia and/or analgesia table for every procedure. 
 

 Not Applicable 

 

 
Sedation, anesthesia, muscle relaxation and analgesia 
 

Species/Procedure Sedative/Anesthetic Dosage/Route/ 
Frequency 

Analgesic Dosage/Route/ 
Frequency 

Axolotl / Animal 
Identification 

Tricaine 
Methanesulfonate 
(MS-222) 

0.1% / Transcutaneous 
& Branchial / As 
needed (PRN) 

Buprenorphine Target = 50 mg/kg (Published 
Range = 0.2 – 75 mg/kg) / 
Intracoelomic / Before 
injection of transponder. 

Axolotl / 
Echocardiography 

Tricaine 
Methanesulfonate 
(MS-222) 

0.1% / Transcutaneous 
& Branchial / As 
needed (PRN) 

N/A N/A 

Mouse / 
Echocardiography 

Pentobarbital 
sodium  
 

60-90 mg/kg 
intraperitoneally. Use 

N/A N/A 



www.manaraa.com

248 

 

 
Or  
isoflurane 

10-20% of the initial 
dose for maintenance. 
 
(3-4% induction, 1-3 % 
maintenance) in 100% 
oxygen 

 
Indicate what parameters will be used to determine the need for additional doses of anesthesia and/or analgesia. 

Anesthesia: If the axolotl continues to thrash around and shows signs of obvious pain (reflex withdrawal from analgesia 
needle insertion), the axolotl should be placed back in the MS-222 bath. 
Mouse:  If responds to toe pinch. 
Analgesia: Although no analgesia was listed in [38], buprenorphine will be given as described in the table [46]. 

 
d. Post-Anesthetic Care of Rodents. 
 

X Not Applicable; anesthesia is not used; the animal is not a rodent; the procedure is non-survival 

X SOP for Post Operative/ Post Anesthetic Care of Rodents will be followed 

 SOP will not be followed.  Describe variance from SOP and justify below.  

 

N/A 

 
e. Post-Anesthetic Care of Non-Rodents. 
 

 Not Applicable; anesthesia is not used; the animal is a rodent; the procedure is non-survival 

 
1. Describe supportive care and monitoring provided during immediate anesthetic recovery period (from cessation of 
anesthesia until sternal recumbency is regained) and intermediate recovery period (from sternal recumbency until the 
animal is able to walk).  

 

Axolotl (Ambystoma mexicanum) – The following are detailed procedures for post-anesthetic care of non-rodents after 
microchip insertion. 
 
Immediate Recovery Period 
The period from cessation of anesthesia or completion of surgery until animal achieves normal ambulation and can eat, 
drink, and groom. 
1. At the end of microchip implantation cardiac surgery will ensue. Please follow procedures for Immediate Recovery 

Period in Post-Operative Care in the Surgical Procedures in Non-Rodents (see Question 35e). 
 
Long Term Recovery Period 
The period when normal activity resumes until the incision is healed. 
At the end of microchip implantation cardiac surgery will ensue. Please follow procedures for Long Term Recovery Period in 
Post-Operative Care in the Surgical Procedures in Non-Rodents (see Question 35e). 

 
34. SURGICAL PROCEDURES in RODENTS: 
 

 NOT APPLICABLE 

 
a. Classification 

X Non-survival surgery (animals do not recover from anesthetic for any period of time) 

 Minor survival surgery  

X Major survival surgery 

 Multiple survival surgeries - Review the Multiple Survival Surgeries Policy and provide justification below. 
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N/A 

 
b. Surgeon(s)  

Provide the names of the person(s) who will perform survival surgery (must also be listed in Q11). 

 Not Applicable; only non-survival surgery will be performed. 

 

Jeremy (Jay) Tolentino Llaniguez 

 
 
c. General Surgical Requirements 
 

X Principles of Rodent Anesthesia and Surgery SOP will be followed. 

 SOP will not be followed.  Describe variance from SOP and justify below.  

 

N/A 

 
d. Specific Surgical Details 

Give a detailed overview of the surgical procedures to be performed, the size and anatomical location of incisions, the 
anticipated time to perform each, methods of closure, time of suture removal, and the time frames of their performance 
in relation to the overall protocol and also in relation to each other (if more than one procedure is performed on the 
same animal).  Clearly indicate the time of planned euthanasia following the surgery. 

Mice (Mus musculus): 
 
Survival Surgery - Mechanically Induced Ischemia: 
1. Pentobarbital sodium (Target Dose = 70-80 mg/kg; Acceptable Dose Range = 60-90 mg/kg) is an ideal anesthetic 

providing an adequate depth of anesthesia for 30-40 minutes. The anesthetic shall be injected intraperitoneally with a 
short 27-gauge ½-inch needle. While withdrawing needle, it is recommended to pinch the skin at the site of injection 
in order to prevent any pentobarbital from adhering to the needle and being removed from the site of injection.  
a. Optional: Dilute to a concentration of 5 mg/mL using sterile water or sterile saline. The diluted drug should be 

prepared in a small vial (e.g. sterile empty injection vial) just prior to injection into the animal. Invert the vial a 
few times and draw the diluted drug from the bottom of the vial (drug is more dense than water). 

b. If an inhaled anesthetic is to be used, anesthetize the mouse with isoflurane (3-4% induction, 1-3 % 
maintenance) in 100% oxygen. 

2. After administering an injectable anesthetic, allow the animal to sit undisturbed in an empty cage as the anesthetic 
takes effect; agitating the animal can affect its metabolism and stress levels, affecting the quality of the surgical 
procedure. Regularly monitor the depth of anesthesia by testing the pain reflex (toe-pinch); the lack of the pain reflex 
signals a medium-deep plane of anesthesia. 
a. A top-up dose of injectable anesthesia (~10-20% of the initial dose) should be administered if the proper depth 

of anesthesia is not reached after 10 minutes. 
3. Once the mouse is at the appropriate plan of anesthesia, administer buprenorphine-SR (sustained release) (1.0 

mg/kg). The analgesic shall be injected subcutaneously. Optional: Buprenorphine-SR can be administered 24-48 hours 
prior to any surgical procedures. 
a. If buprenorphine-SR is not available, administer 0.05 mg/kg of Buprenex (buprenorphine hydrochloride) as a 

prophylactic analgesic by subcutaneous injection. 
4. Using an animal hair clipper with a size 40 clipper blade (Harvard Apparatus, catalog no. 525204 or equivalent), 

remove hair on the animal’s chest at the surgical site. It is advisable to (perform this portion of the protocol in an area 
of the laboratory away from the surgical suite), but depending upon the anesthesia used, maintaining aseptic areas as 
best as possible shall be followed, such as using clearly defined, but separate areas on the same table and/or placing 
sterile pads/coverings over areas defined for surgery AFTER the animal has been shaved. 

5. Masking tape and a simple platform or a commercially available small animal surgical tray (Harvard Apparatus catalog 
no. 722590) can be used to secure the animal in the proper position for intubation and surgery. Care should be taken 
to avoid excessive tension and/or stretching of the limbs while positioning and fixing the mouse’s limbs; joints can be 
traumatized or breathing may be impaired.  
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6. A supplemental heat source will be used (e.g. electric warming pad, phase-change heat pad, far infrared heating, or 
equivalent) to maintain normal mouse body temperature. Ensure sterile and aseptic techniques are observed when 
external equipment is incorporated into the procedure. Care should be taken to avoid overheating or burning the 
animal. 

7. Intubation for ventilation will be used in survival surgery procedures in mice whenever a thoracotomy is performed. 
Commercially available intubation systems are available from Harvard Apparatus (Catalog no. ST1 72-9085) or 
Hallowell EMC (Catalog no. 000A3747). A safe and effective method that exposes the animals to minimal stress shall 
be developed and used by the surgeon as part of this pilot protocol. 

8. Artificial ventilation using a mouse ventilator 687 series (Harvard Apparatus, catalog no. 550001) or equivalent should 
be used with ventilation rates and tidal volumes as provided by company formulas or per recommendations in [22]. 
For the Harvard Apparatus 687 series mouse ventilator, the formulas are: 

 

 

Where  is tidal volume, and 

 is animal mass in kg. 
9. Sterile, non-medicated ophthalmic ointment should be applied to the eyes to prevent corneal drying [20]. 
10. Surgical site preparation uses three cycles of alternating scrubbing with chlorhexidine solution (0.75%) and 70% 

alcohol; the solutions should be warmed to 37°C to prevent hypothermia. 
11. Subcutaneous, parenteral administration of warmed, sterile fluids (1-2 mL / 100g) body weight) will be administered 

as mice are vulnerable to fluid loss given their body volume to surface area ratio. 
12. The mouse should be positioned for survival cardiac surgery in the right lateral position as described in [24]. 
13. Before an incision is made, a local anesthetic (0.1 mL of a 50%/50% mixture of lidocaine [0.5 mg/kg] and bupivicaine 

[1.5 mg/kg]) shall be injected subcutaneously in the area surrounding the incision. 
14. The landmark for the incision is the left armpit. Using scissors, an oblique (~8-mm) incision is made (~2 mm) away 

from the left sterna border toward the left armpit (~1-2 mm below it). Both layers of thoracic muscles can either be 
cut or bluntly dissected, taking caution to avoid the superficial thoracic vein. The ribs and inflating lung should now be 
visible through the thin and semitransparent chest wall. 
a. If any arteries are accidentally transected while opening the chest, quickly cauterize them as needed to prevent 

increased morbidity/mortality secondary to hemorrhaging. 
15. The chest cavity is opened with microsurgical scissors or hemostats by a small incision (~5-10 mm in length) at the 

level of the fourth or fifth intercostal space. 
a. The chest retractor is inserted and opened gently to spread the wound ~8-10 mm in width. The heart and lung 

can now be visualized. The time from incision to visualizing the heart and lung should be ≤ 10 minutes. 
16. Grasping the pericardium with curved and straight forceps, gently separate the covering and fold over the arms of the 

retractor if possible. This maneuver pushes the lung slightly upwards, providing a clearer view of the apex of the 
heart. 

17. The apex of the ventricle (Figure 5) will be mechanically clamped for at least 30 minutes [33,34] with microsurgical 
clips, vascular occlusion clamps or hemostats (e.g. Satinsky-type clamps) to reduce the blood flow to the region to 
ensure irreversible cellular damage [33,34], inducing myocardial injury by ischemia. 
a. While the apical portion of the heart is clamped, the ribcage should be reapproximated, overlying muscles and 

skin should be returned to their normal position and the incision can be covered by sterile gauze socked in 
warmed (37°C) sterile saline. 

b. Ischemia can be verified by the blanching of the clamped cardiac tissue. 
c. Irreversible damage can be verified after clamp removal if observations of muscle activity at the apical portion of 

the ventricle are quiescent or contracting irregularly and at a much lower rate than remote regions of the heart. 
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Figure 5: Red circle denotes site of mechanical clamping to simulate the same injury as ligating the LAD at the red X[22]. 

 
18. The cardiac cavity can be rinsed with 3-5 mL of sterile Lactated Ringer’s solution or sterile saline to flush the cavity, 

compress the lungs and remove any air in the pleural cavity. 
19. The chest cavity is closed by bringing together the 4th and 5th ribs with two 6-0 nylon (non-absorbable) sutures (with 

gentle pressure applied to the chest wall to reduce the volume of free air). 
a. Immediately before tightening the second suture, the lungs will be reinflated by blocking the ventilator outflow 

for no more than 3 respiratory cycles. The Lactated Ringer’s or saline solution (if used) will ensure there is no air 
upon chest closure; the excess solution will be reabsorbed gradually by the surrounding tissue. 

20. The muscles are closed with 4-0 absorbable sutures while the skin is closed with 3-0 or 4-0 nylon (monofilament, non-
absorbable) sutures. Interrupted suture patterns should be used on the skin to prevent wound dehiscence. Rodent 
skin has the propensity to invert; everting suture patterns (horizontal mattress, simple interrupted, etc.) should be 
used. Time from clamp removal to chest closure should be ≤ 10 minutes. 

 
Immediate Recovery Period: Any variance from the SOP – Post Operative / Post Anesthetic Care of Rodents is denoted in 
underlined italics. 
The period from cessation of anesthesia or completion of surgery until animal achieves normal ambulation and can eat, 
drink, and groom. 
1. Immediately after closing the animal, a 0.5 mL bolus of 37°C sterile saline will be given. 
2. Animals are carefully observed every 5 minutes; anesthetized animals are never left unattended. 
3. Mice shall be placed on a warm platform under continued ventilation (100% oxygen) in a designated recovery area to 

allow recovery from surgery. 
4. After the mouse resumes a normal breathing pattern, it can be extubated. To prevent respiratory distress, the mouse 

should breathe oxygen for another 5-10 minutes before returning to a cage. 
5. The animal is placed in a clean dry cage without bedding, as it may be ingested or inhaled during recovery. The cage 

should be placed on a supplemental heating source (e.g. electric warming pad, phase-change heat pad, far infrared 
heating, or equivalent) to prevent hypothermia. One should carefully monitor and regulate the anesthetized animals’ 
core temperature because hyperthermia can easily occur and cause permanent damage and even death. To prevent 
possible injury to the anesthetized animal, recovering animals should be singly housed. If recovering animals are 
group housed, more frequent monitoring must be done. 

6. Additional eye lubricant shall be instilled at this time. 
7. Rate and depth of respiration is visually monitored, temperature is taken or palpate extremities to check animal’s 

temperature. Color of mucous membranes, ears and tail are monitored to confirm normal tissue perfusion. Reflexes 
(i.e. pedal, palpebral and eye position) are monitored to assess recovery from anesthesia. 

8. Animals should be turned every 10 minutes to improve respirations and decrease recovery time. 
9. For surgical procedures longer than 30 minutes and/or where fluid loss due to hemorrhage or evaporation is 

anticipated, fluid support will be provided. 
10. The analgesic regime will be followed as indicated in the approved protocol. Unless justification to the contrary is 

provided, all animals will receive at least 24 hours of analgesia following any surgical procedure. 
11. The procedure performed will be noted on the animal's cage card. 
12. If no complications arise, animal is monitored and care provided as described above every 30 to 60 minutes until the 

patient regains normal ambulation. 
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13. Once animal has normal ambulation, and is able to eat and drink normally, it will be returned to normal housing (in a 
cage with bedding) to the DLAR housing facility. Food will be provided on the cage floor. Additional supportive care 
will be provided by the research team unless DLAR staff is directed to assume this responsibility. 

Long Term Recovery Period 
The period when normal activity resumes until the incision is healed. 
1. Research staff will check on the animal early the following day and at least four times (4X) daily for the first two days 

after surgery. Research staff will ensure that the animal is eating, drinking, eliminating, and ambulating normally. 
Also, body weight should be obtained daily for the first four days after surgery [or until the animal is sacrificed], then 
every other day thereafter until the animal is sacrificed for heart tissue harvesting). 

2. DietGel® 76A (Clear H2O, Portland, ME) or equivalent can be administered for supportive care (nutrition and 
hydration). 

3. Daily assessments of the wounds for any complications shall occur until the animal is euthanized (mice are to be kept 
until 19 days post-surgery, see Question 31). Suture removal shall be 10-14 days post-surgery. 
a. The incision site is checked for clear or purulent discharge, redness, swelling, pain, suture removal by the animal, 

or incision breakdown. 
4. Signs of surgical complication such as infection or pain will prompt a consultation with a DLAR veterinarian. 
5. Any abnormalities (i.e. dehydration, lethargy and inappetence) will warrant supportive care, consultation with a DLAR 

veterinarian, and continued frequent monitoring and care; detailed records will be kept. Continued weight loss, 
dehydration and lethargy are not acceptable and may require early euthanasia. 

6. Monitoring will continue daily until incision is healed and sutures are removed. 
 
Heart Harvesting Procedure 
1. For nuclei labeling index studies, each animal shall be injected with BrdU [30 mg/kg] three hours prior to collecting 

the heart. 
2. Since this is a terminal procedure, portions of the full survival surgery procedure (Question 34c, Survival Surgery - 

Mechanically Induced Ischemia, Steps 1-19) can be omitted. 
a. To open the thorax of the animal, follow Question 34c, Survival Surgery - Mechanically Induced Ischemia, Steps 

1-4, 13-15. 
3. Hearts shall be cut in half and immediately flash frozen using LN2 and/or placed in chilled (2-8°C) Allprotect Tissue 

Reagent (Qiagen, Cat. No. 76405) to stabilize DNA, RNA and protein. 
a. If sample staining does not follow immediate tissue harvesting, the samples may be frozen and stored in -80°C. 

4. To study the histological evolution of heart repair after mechanically induced ischemia, one half of each sampled 
heart shall be sectioned for immunohistochemistry studies; the other heart shall be stored in Allprotect Tissue 
Reagent and frozen. The apex of the heart shall be included in each section as a reference point of the origin of 
ischemia. 

5. Within each tissue sample, the goal is to identify, under microscopy, areas of necrotic, perinecrotic and penumbral 
tissue to elaborate the spatial relationships of tissue response to mechanically-induced ischemia. This will help 
identify the proliferating zone in relation to areas of necrosis (e.g. tissue 2 mm away from the apex) in each heart. 

6. Cellular proliferation activity in the penumbra will be indexed by staining with antibodies specific for BrdU. Across the 
tissue samples, the goal is to identify how these zones of heart tissue evolve in response to an MI. 

 
Perfusion Fixation In Mice 
Terminal procedure to fix and stabilize heart tissue for downstream processing. 
1. Terminal procedures will take place in Scott Hall DLAR facility, Advisor’s Laboratory (Scott Hall 6213), IBio DLAR facility 

or Sponsor’s Laboratory (IBio 1310). 
2. Prepare fixative(s) and perfusion buffer(s) as required; see Question 33. “Describe All Non-Surgical Procedures”. 
3. Set up the perfusion device as stated in Question 33. “Describe All Non-Surgical Procedures”. 
4. Induce anesthesia. Administer pentobarbital sodium (Target Dose = 70-80 mg/kg; Acceptable Dose Range = 60-90 

mg/kg). 
a. Optional: Dilute to a concentration of 5 mg/mL using sterile water or sterile saline. The diluted drug should be 

prepared in a small vial (e.g. sterile empty injection vial) just prior to injection into the animal. Invert the vial a 
few times and draw the diluted drug from the bottom of the vial (drug is more dense than water). 
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5. After administering an injectable anesthetic, allow the animal to sit undisturbed in an empty cage as the anesthetic 
takes effect. Regularly monitor the depth of anesthesia by testing the pain reflex (toe-pinch); the lack of the pain 
reflex signals a medium-deep plane of anesthesia. 
a. A top-up dose of injectable anesthesia (~10-20% of the initial dose) should be administered if the proper depth 

of anesthesia is not reached after 10 minutes. 
6. Once the mouse is at the appropriate plan of anesthesia, use an animal hair to remove hair on the animal’s chest at 

the surgical site. 

7. Secure the animal in a dorsal-recumbent position for intubation. Intubate as outlined in the procedures describing 
survival surgery. 

8. Place the animal in a large enough pan to collect any and all blood and perfusate that is drained. 
9. With the animal in a dorsal-recumbent position, open the chest cavity by making a lateral incision through the skin 

and abdominal wall just below the rib cage. 
10. Make an incision across the entire diaphragm to expose the thoracic cavity. 
11. Make cuts along the midline of the rib cage on each side, allowing the surgeon to lift the entire rib cage away from 

the chest cavity. Carefully trim any fascia connecting the rib cage away from the heart. 
12. After attaching an appropriate needle (25-30 Ga.) to the end of the perfusion device, insert the needle into the left 

ventricle and into the ascending aorta. Make sure the tip does not reach the aortic arch. 
13. Using appropriate hemostats, clamp the needle where it enters the heart and around the needle tip in the ascending 

aorta in order to secure the heart in place. 
14. In order to allow for the drainage of blood from the animal, make a small incision into the right atrium. Make sure not 

to damage the descending aorta. 
15. Flush the mouse with about 40-50 mL of flushing buffer, adjusting the clamp to allow for a flowrate of 2-4 mL/min. 
16. Switch to the appropriate fixative, taking care to avoid introducing air bubbles into the system. Flush the mouse with 

the fixative for 20-30 minutes at a flowrate of 1-2 mL/min. 
17. Harvest the heart and place in a container of the same fixative used in the terminal perfusion procedure. Ensure the 

heart is fully immersed in the fixative. 
18. Complete the euthanization of the animal per Question 37. “Euthanasia Methods”. 
 

 
e. Fill out the following anesthesia table for every surgical procedure considered. 
 

 
Pre/Intra-operative analgesia, anesthesia, sedation, and muscle relaxation 
 

Species/Procedure Initial Regimen Dosage/Route/ Frequency Maintenance 
Regimen** 

Dosage/Route
/ Frequency 

Mice / Survival 
Cardiac Surgery & 
Terminal Perfusion 

Pentobarbital sodium 
70-80 mg/kg / Intraperitoneal 
(IP) / Start of surgery only. 

~10-20% of 
initial regimen. 

As needed 
(PRN). 

Mice / Survival 
Cardiac Surgery 

Buprenorphine-SR 
(Sustained Release) 

1.0 mg/kg / Subcutaneous / 
Up to 24-48h prior to surgery 

N/A N/A 

Mice / Survival 
Cardiac Surgery 

Buprenex (Buprenorphine 
chloride) 

0.05 mg/kg / Subcutaneous / 
Onset of surgery 

N/A N/A 

Mice / Survival 
Cardiac Surgery 

50%/50% mixture of 
lidocaine [0.5 mg/kg] and 
bupivicaine [1.5 mg/kg] 

0.1 mL / Subcutaneous / Prior 
to incision only. 

N/A N/A 

 
**Indicate what parameters will be used to determine the need for additional doses of anesthesia. 

Regularly monitor (every 5-7 minutes) the depth of anesthesia by testing the pain reflex (toe-pinch); a top-up dose of 
anesthesia (~10-20% of the initial dose) should be administered as needed. The lack of the pain reflex signals a medium-
deep plane of anesthesia. 

 
f. Post-Operative Surgical Details 



www.manaraa.com

254 

 

 

 Not Applicable; the surgery is non-survival 

X SOP for Post Operative/ Post Anesthetic Care of Rodents will be followed 

 SOP will not be followed.  Describe variance from SOP and justify below.  

 

N/A 

 

 
Post-operative sedation and analgesia 
 

Species/Procedure Sedative Dosage/Route/ 
Frequency 

Analgesic Dosage/Route/ Frequency 

Mice / Post-
operative follow up 

N/A N/A Buprenorphine-SR 
(Sustained Release) 

1.0 mg/kg / Subcutaneous / Every 
72h (q72h) PRN (Applicable to mice 
that are sacrificed after 72h.) 

Mice / Post-
operative follow up 

N/A N/A Buprenex 
(Buprenorphine chloride) 

0.05mg/kg SQ 8-12h S/P surgery for 
at least 24h, then q8-12h PRN 

 
**Indicate what parameters will be used to determine the need for additional doses of analgesia. 

If mice show continued sign of stress (lack of grooming behavior or a dull hair coat, decreased activity and/or a hunched 
posture) additional doses of analgesia shall be administered. 

 
g. How will the animals be monitored for adverse effects?  Describe any potential effects. 
 

Because myocardial infarction surgeries may cause significant mortality, mice will be monitored often (4X daily) for the first 
few days. Lethargy, inactivity, non-responsive or reluctance to move with gentle stimulation, increased respiratory rate or 
effort and/or lateral recumbency are signs we will watch for and euthanize following this surgery. Research staff will check 
on the animal per the SOP for Post Operative/Post Anesthetic Care of Rodents. Also, body weight should be obtained daily 
for the first four days after surgery [or until the animal is sacrificed], then every other day thereafter until the animal is 
sacrificed for heart tissue harvesting). 

 
 
35. SURGICAL PROCEDURE in NON-RODENTS: 
 

 NOT APPLICABLE 

 
a. Classification 

X Non-survival surgery (animals do not recover from anesthetic for any period of time) 

 Minor survival surgery 

X Major survival surgery 

 Multiple survival surgeries - Review the Multiple Survival Surgeries Policy and provide justification below. 

 

N/A 

 
b. Surgeon(s)  

Provide the names of the person(s) who will perform survival surgery (must also be listed in Q11). 

 Not Applicable; only non-survival surgery will be performed. 

 

Jeremy (Jay) Tolentino Llaniguez 

 
c. Surgical Details 
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Give a detailed overview of the surgical procedures to be performed, the size and anatomical location of incisions, the 
anticipated time to perform each, and the time frames of their performance in relation to the overall protocol and also 
in relation to each other (if more than one procedure is performed on the same animal).  Clearly indicate the time of 
planned euthanasia following the surgery. 

Axolotl (Ambystoma mexicanum) – Operators must always wear powder-free latex or nitrile gloves when handling axolotls. 
Survival Surgery - Mechanically Induced Ischemia: 
1. The general surgical procedure for induced myocardial ischemia in axolotls will begin with a minimum 24-hour fast 

[40-42] of the animal(s) to avoid emesis during anesthesia induction and to reduce stomach volume to provide room 
for organ movement during surgery. 

2. Anesthesia will be induced by placing the animal(s) in a water bath with 0.1% tricaine methanesulfonate (MS-222); 
depth of surgical plane of anesthesia is determined by the loss of righting reflex, no spontaneous movements and no 
reflex to pain. 

3. Insert the microchip transponder as outlined in Question 33a. Animals can also be identified and tracked if singly 
housed. 

4. A single dose of enrofloxacin/Baytril® (Dosage: 5 mg/kg, Recommended: Dilute stock Baytril® solution from 22.7 
mg/mL to a 5 mg/mL concentration) will be administered pre-operatively as amphibian procedures are considered 
“clean-contaminated” at best. Inject the antibiotic intracoelomically just in front of a hind leg, approximately parallel 
to the body and about midway between the dorsal and ventral surfaces: that is, dorsal to the bladder and ventral to 
the kidneys and caudal enough to prevent injecting into the liver or spleen. See Figure 2 for details. 
a. To dilute the enrofloxacin, it is suggested to use one of the following formulations suited for amphibian patients: 

(1) one part of saline (0.9% NaCl) mixed with two parts of 5% dextrose, or (2) seven parts of saline mixed with one 
part of sterile water. 

b. To facilitate the IC injection into the animal, the axolotls can be placed into a state of anesthesia induction or 
even into a light plane of anesthesia before injecting. 

c. For animals receiving buprenorphine, administer both the analgesic and antibiotic at the same time to reduce 
stress upon the animal. 

5. The animal(s) will then be transferred to a pan with 50% Holtfreter’s solution (1.75 g NaCl, 0.050 g CaCl2, 0.025 g KCl, 
and 0.100 g NaHCO3 per liter of dechlorinated water) [40] in a dorsal-recumbent position. Enough solution shall be 
placed in the pan to adequately cover the gills. 
a. Another option is to cover the animal with Kimwipe™ laboratory tissues or gauze that have been moistened with 

50% Holtfreter’s solution. Tease away the tissues to expose the surgical area while keeping the rest of the animal 
covered. Regularly monitor the depth of anesthesia by testing the pain reflex; additional anesthesia can be 
achieved by placing the animal in a bath of maintenance dose MS-222 solution or 3-5 mL of additional 
maintenance dose MS-222 can be applied directly to the gills and the moistened Kimwipes™ laboratory tissues 
or gauze that cover the animal until the pain reflex subsides. 

6. The ventral surface of the thorax will be disinfected by placing sterile gauze soaked in chlorhexidine solution (0.75%) 
or benzalkonium solution (2 mg/L) for 5-10 minutes at the intended site of incision; do not rub the gauze on the 
animal’s skin. It is important to maintain the mucus layer covering the animal’s skin. 

7. Before proceeding with the incision, remove the gauze containing chlorhexidine and gently wash the area with sterile 
normal saline (0.9% NaCl) over another bucket or sink, placing the animal back in the pan with 50% Holtfreter’s 
solution once finished. If Kimwipes™ are used, simply irrigate the chest area that is left exposed with sterile normal 
saline (0.9% NaCl). 

8. With the animal in a dorsal-recumbent position, a ~10mm paramedian ventral thorax-area incision will be made with 
a #15 blade (amphibian integument is thin, but very tough [41]) on the animal’s right or left side to prevent damaging 
the ventricular muscle and midline abdominal vein. 

9. Microsurgical scissors will be used to expose the cardiac cavity; the pectoral girdle and muscles will be retracted with 
micro hemostats, sutures or rib separator. 

10. The apex of the ventricle will be mechanically clamped for at least 30 minutes with microsurgical clips, vascular 
occlusion clamps or hemostats (e.g. Satinsky-type clamps) to reduce the blood flow to the region to ensure 
irreversible cellular damage [33,34], inducing myocardial injury by ischemia. Ischemia can be verified by the blanching 
of the clamped cardiac tissue. 
a. Irreversible damage can be verified after clamp removal by observations of the muscle activity at apical portion of 

the ventricle are quiescent or contracting irregularly and at a much lower rate than remote regions of the heart. 



www.manaraa.com

256 

 

11. The cardiac cavity can be rinsed with 3-5 mL of sterile Lactated Ringer’s or amphibian fluid solution (as mentioned 
above) to flush the cavity before the pericardium is approximated using non-absorbable, monofilament sutures. 

12. The skin will then be closed using an everting suture pattern (to prevent keratin cysts [40,41]) with non-absorbable, 
monofilament sutures; 3-0 or 4-0 suture is generally adequate. 

 
Axolotl (Ambystoma mexicanum) – The following are detailed procedures for post-anesthetic care of non-rodents. 
Immediate Recovery Period 
The period from cessation of anesthesia or completion of surgery until animal achieves normal ambulation and can eat and 
drink. 
13. After closing the incision, administer subcutaneous or intracoelomic postoperative fluids. Two easily formulated 

solutions for use in amphibian patients are (1) one part of saline (0.9% NaCl) mixed with two parts of 5% dextrose, 
and (2) seven parts of saline mixed with one part of sterile water. An appropriate dose of either solution is 25 mL/kg 
of body weight [40]. 

14. The animal(s) will be placed into a fresh bath of 50% Holtfreter’s solution to allow full recovery from anesthesia. 
a. Once placed in a cage with fresh 50% Holtfreter’s solution, the administration of antinociceptives shall be 

followed per the dosing described in the Long Term Recovery Period. 
14.a.1. For animals in the buprenorphine arm, no further action is required. 
14.a.2. For animals in the butorphanol arm, butorphanol shall be added to the cage water. 

15. The analgesic regime will be followed as described in below. Unless justification to the contrary is provided, all 
animals will receive at least 24 hours of analgesia following any surgical procedure. 

16. The procedure performed will be noted on the animal's cage card. 
17. If no complications arise, animal is monitored and care provided as described above every 30 to 60 minutes. 
18. Once animal has normal ambulation, it will be returned to normal housing (original aquatic container) to the DLAR 

housing facility. Food will be provided following feeding protocol. Additional supportive care will be provided by the 
research team unless DLAR staff is directed to assume this responsibility. 

 
Long Term Recovery Period 
The period when normal activity resumes until the incision is healed. 
19. Research staff will check on the animal early the following day and at least daily thereafter. Research staff will ensure 

that the animal is eating, drinking, eliminating, and ambulating normally. Also, body weight should be obtained daily 
for the first four days after surgery [or until the animal is sacrificed], then every other day thereafter until the animal 
is sacrificed for heart tissue harvesting). 

20. For 3-5 days following surgery (as applicable by experimental design of sampling procedures), the animals shall be 
given daily injections of enrofloxacin/Baytril® (Dosage: 5 mg/kg, Recommended: Dilute stock Baytril® solution from 
22.7 mg/mL to a 5 mg/mL concentration) intracoelomically [46]. 
a. To dilute the enrofloxacin, it is suggested to use one of the following formulations suited for amphibian patients: 

(1) one part of saline (0.9% NaCl) mixed with two parts of 5% dextrose, or (2) seven parts of saline mixed with one 
part of sterile water. 

b. To facilitate the IC injection into the animal, the axolotls can be placed into a state of anesthesia induction or 
even into a light plane of anesthesia before injecting. 

c. For animals receiving buprenorphine, administer both the analgesic and antibiotic at the same time to reduce 
stress upon the animal. 

21. The analgesic regime in the long term recovery period is: 
a. Buprenorphine shall be given q24h for 48h. To treat the animals as similarly as possible, animals receiving 

buprenorphine shall have their cage water changed every day, at the time of administering the analgesic. 
b. Butorphanol shall be administered in the axolotl's cage water for 48h. In order to keep the levels of dissolved 

antinociceptives consistent, cage water shall be changed every day with a fresh bolus of Butorphanol added. 
21.b.1. Depending upon the rate of metabolism of butorphanol, as determined in the Anesthesia + Butorphanol 

arm, additional butorphanol MAY be added to the axolotl’s environment to maintain steady levels of the 
drug before a fresh cage change occurs. 

22. Food shall be offered starting on postoperative day 1 (surgical procedure is deemed day 0). 
23. Daily assessments of the wounds for any complications should occur up to suture removal (7-10 days) and for a few 

days afterwards. 
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24. The incision site is checked for clear or purulent discharge, redness, swelling, pain, suture removal by the animal, or 
incision breakdown. 

25. Sutures shall be removed under anesthesia (0.1% tricaine methanesulfonate/MS-222) [40-42,47]. 
 
Heart Harvesting Procedure 
1. For nuclei labeling index studies, each animal shall be injected with BrdU (250 mg/kg [11,48]) through the 

intracoelomic route at least three hours prior to collecting the heart. 
a. BrdU is soluble in water up to 10 mg/mL without the use of heat. To dissolve the BrdU, it is suggested to use one 

of the following formulations suited for amphibian patients: (1) one part of saline (0.9% NaCl) mixed with two 
parts of 5% dextrose, or (2) seven parts of saline mixed with one part of sterile water. 
1.a.1. A typical axolotl weighs about 100 g (0.1 kg). At a BrdU concentration of 10 mg/mL, a 100 g axolotl will 

require a BrdU injection volume of 2.5 mL to achieve a 250 mg/kg BrdU dose. 
b. If staining results are not sufficient, BrdU [250 mg/kg] can be injected every 24 hours for up to 7 days prior to 

heart harvesting (as allowed by sampling timeline) [48]. 
2. Since this is a terminal procedure, portions of the full survival surgery procedure (Question 35c, Survival Surgery - 

Mechanically Induced Ischemia, Steps 1-12) can be omitted. 
a. To open the thorax of the animal, follow Question 35c, Survival Surgery - Mechanically Induced Ischemia, Steps 8-

9. 
3. Hearts shall be cut in half and immediately flash frozen using LN2 and/or placed in chilled (2-8°C) Allprotect Tissue 

Reagent (Qiagen, Cat. No. 76405) to stabilize DNA, RNA and protein. 
a. If sample staining does not follow immediate tissue harvesting, the samples may be frozen and stored in -80°C. 

4. To study the histological evolution of heart repair after mechanically induced ischemia, one half of each sampled 
heart shall be sectioned for immunohistochemistry studies; the other heart shall be stored in Allprotect Tissue 
Reagent and frozen. The apex of the heart shall be included in each section as a reference point of the origin of 
ischemia. 

5. Within each tissue sample, the goal is to identify, under microscopy, areas of necrotic, perinecrotic and penumbral 
tissue to elaborate the spatial relationships of tissue response to mechanically-induced ischemia. This will help 
identify the proliferating zone in relation to areas of necrosis (e.g. tissue 2 mm away from the apex) in each heart. 

6. Cellular proliferation activity in the penumbra will be indexed by staining with antibodies specific for BrdU. Across the 
tissue samples, the goal is to identify how these zones of heart tissue evolve in response to an MI. 

 
Perfusion Fixation In Axolotls: 
Terminal procedure to fix and stabilize heart tissue for downstream processing. 
1. Terminal procedures will take place in IBio DLAR Facility or Sponsor's Laboratory (IBio 1310). 
2. Any general surgical procedure should begin with a minimum 24-hour fast [40-42] of the animal(s) to avoid emesis 

during anesthesia induction and to reduce stomach volume to provide room for organ movement during surgery. 
3. Prepare fixative(s) and perfusion buffer(s) as required; see Question 33. “Describe All Non-Surgical Procedures”. 
4. Set up the perfusion device as stated in Question 33. “Describe All Non-Surgical Procedures”. 
5. Anesthesia will be induced by placing the animal(s) in a water bath with 0.1% tricaine methanesulfonate (MS-222); 

depth of surgical plane of anesthesia is determined by the loss of righting reflex, no spontaneous movements and no 
reflex to pain. 

6. Place the animal in a large enough pan to collect any and all blood and perfusate that is drained. 
7. With the animal in a dorsal-recumbent position, a ~10mm paramedian ventral thorax-area incision will be made with 

a #15 blade (amphibian integument is thin, but very tough [41]) on the animal's right or left side to prevent damaging 
the ventricular muscle and midline abdominal vein.  
a. If the animal has already had a prior surgery, re-open the prior incision using microsurgical scissors. 

8. Microsurgical scissors will be used to expose the cardiac cavity; the pectoral girdle and muscles will be retracted with 
micro hemostats, sutures or rib separator. 

9. Carefully grasp the pericardium and cut open with microsurgical scissors. 
a. If the animal has already had a prior surgery, re-open the prior incision using microsurgical scissors. 

10. Using fine forceps, raise the bulbus cordis and truncus arteriosus and pull a fine suture or thread (4-0 to 6-0 is 
suggested) behind the structure. Create a loosely fitting loop around the truncus arteriosus in preparation for holding 
an injection needle in place. 
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11. After attaching an appropriate needle (25-30 Ga.) to the end of the perfusion device, insert the needle starting from 
the proximal end of the bulbus cordis. Before tightening the thread around the bulbus cordis to hold the needle in 
place, ensure the injection needle is not inserted too far into the truncus arteriosus. Inserting the needle too far to 
the distal edge of the truncus will prevent the flow of perfusate into all of the exiting arteries. 

12. In order to allow for the drainage of blood from the animal, make a small incision into the sinus venosus (dorsal side 
of the heart). See Figure 6. 

13. Flush the axolotl with about 40-50 mL of flushing buffer, adjusting the clamp to allow for a flowrate of 2-4 mL/min. 
14. Switch to the appropriate fixative, taking care to avoid introducing air bubbles into the system. Flush the axolotl with 

the fixative for 20-30 minutes at a flowrate of 1-2 mL/min. 
15. Harvest the heart and place in a container of the same fixative used in the terminal perfusion procedure. Ensure the 

heart is fully immersed in the fixative. 
16. Complete the euthanization of the animal per Question 37. “Euthanasia Methods”. 

 
Figure 6: Anatomy of the axolotl heart. b.c. = Bulbus Cordis, t.a. = Truncus Arteriousus, s.v. = Sinus Venosus, ven. = 

Ventricle, A.III. = Carotid Arch, A.IV. = Systemic Arch, A.V. = “Third” Arch, A.VI = Pulmonary Arch 

 
d. Pre-operative procedures 
 

1. Describe any research procedures (e.g. conditioning, manipulations, study drug treatments, catheter placement, 
etc.) to be performed before initiating surgery: [   ] None (acclimation only) 

1. The first dose of enrofloxacin (5 mg/kg) will be administered intracoelomically pre-operatively as amphibian 
procedures are considered “clean-contaminated” at best. 

2. Depending upon the experimental group, antinociceptives shall be administered as such: 
a. A dose of buprenorphine shall be given pre-operatively as an intracoelomic (IC) injection at least 1h prior to 

surgery. 
b. Butorphanol shall be administered directly into the 50% Holtfreter’s solution of the animal’s cage at least 1h 

prior to surgery. 

 
2. Describe any withholding of food or water prior to surgery and the time span:  [   ] None 

The general surgical procedure for induced myocardial ischemia in axolotls will begin with a minimum 24-hour fast [40-42] 
of the animal(s) to avoid emesis during anesthesia induction and to reduce stomach volume to provide room for organ 
movement during surgery. 

 
3. Fill the following table for every surgical procedure considered.  Specify any pre-operative sedative or pre-emptive 

analgesic to be administered. [   ] None 
 

 
Pre-operative sedation and analgesia 
 

Species/Procedure Sedative Dosage/Route/ 
Frequency 

Analgesic Dosage/Route/ Frequency 
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Axolotl / Survival 
Cardiac Surgery 

Tricaine 
Methanesulfonate 
(MS-222) 

0.1% / 
Transcutaneous 
& Branchial / As 
needed (PRN) 

Buprenorphine 
 
 
 
Or: 
Butorphanol 

Target = 50 mg/kg (Published 
Range = 0.2 – 75 mg/kg) / 
Intracoelomic / One dose at least 
1h prior to surgery 
 
Target = 0.5 mg/L 50% Holtfreter’s 
solution / Transcutaneous & 
Branchial / One dose at least 1h 
prior to surgery 

Axolotl / Terminal 
perfusion 

Tricaine 
Methanesulfonate 
(MS-222) 

0.1% / 
Transcutaneous 
& Branchial / As 
needed (PRN) 

N/A N/A 

 
e. Surgical anesthesia induction and intra-operative procedures 
 

1. List each surgery and the initial and maintenance anesthetic protocol. 

 
Intra-operative anesthesia, sedation, muscle relaxation and analgesia 
 

Species / 
Procedure 

Initial Regimen Dosage/Route/ 
Frequency 

Maintenance 
Regimen 

Dosage/Route/ Frequency 

Axolotl / 
Survival Cardiac 
Surgery and 
Terminal 
perfusion 

Tricaine 
Methanesulfonate 
(MS-222) 

0.1% / Transcutaneous 
& Branchial / As 
needed (PRN) 

Tricaine 
Methanesulfonate 

0.05% [40] / Transcutaneous & 
Branchial / As needed (PRN) 

 
2. Describe any supportive care given to the anesthetized animal. 

Skin of axolotls shall be continually moistened throughout surgical procedure. This can be achieved by performing the 
surgery in a tray filled with enough 50% Holtfreter’s solution (see Question 35.d.4) to keep the gills submerged or by 
wrapping the axolotl in moistened Kimwipes™ and ensuring they stay well-saturated with 50% Holtfreter’s solution. 

 
3. Describe the methods and time frames by which surgical anesthesia, analgesia, physiologic parameters (e.g. vital 

signs) and over all well-being of the animal will be monitored.  Indicate what parameters will be used to determine 
the need for additional doses of anesthesia.  Describe what type of written intra-operative record will be kept. 

Monitoring Physiologic Parameters 
1. The depth of surgical plane of anesthesia will be continuously monitored (every 5-7 minutes) by observing for the 

loss of righting reflex, ensuring no spontaneous movements and no reflex to pain. 
2. The appropriate plane of anesthesia is characterized by branchial and gular respiratory movements of 8 – 10 

respirations/ [49]. 
a. Additional anesthesia can be achieved by placing the animal in a bath of maintenance dose MS-222 solution or 

3-5 mL of additional maintenance dose MS-222 can be applied directly to the gills and the moistened 
Kimwipes™ laboratory tissues or gauze that cover the animal until the pain reflex subsides. 

Written intra-operative records shall note the following: 
1. Time of incision. 
2. Time of chest cavity exposure using retractors. 
3. Time of application of mechanical clamp. 
4. Time of removal of mechanical clamp. 
5. Time to close chest cavity. 
6. Time to close animal. 
Any additional notes, observations or recommendations. 
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4. Describe how the surgical site(s) will be prepared prior to surgery. 

1. The animal(s) will be transferred to a pan with 50% Holtfreter’s solution (1.75 g NaCl, 0.050 g CaCl2, 0.025 g KCl, and 
0.100 g NaHCO3 per liter of dechlorinated water) [40] in a dorsal-recumbent position. Enough solution shall be 
placed in the pan to adequately cover the gills. 
a. Another option is to cover the animal with Kimwipe™ laboratory tissues or gauze that have been moistened with 

50% Holtfreter’s solution. Tease away the tissues to expose the surgical area while keeping the rest of the 
animal covered. Regularly monitor the depth of anesthesia by testing the pain reflex; additional anesthesia can 
be achieved by placing the animal in a bath of maintenance dose MS-222 solution or by squirting 3-5 mL of 
maintenance dose MS-222 solution, applying the 3-5 mL directly on the axolotl’s gills and the covering 
Kimwipe™ laboratory tissues or gauze, until the pain reflex subsides. 

2. The ventral surface of the thorax will be disinfected by placing sterile gauze soaked in chlorhexidine solution (0.75%) 
or benzalkonium solution (2 mg/L) for 5-10 minutes at the intended site of incision. It is important not to rub the 
gauze at the surgical site. Maintaining the mucus layer over the skin will speed healing and improve outcomes. The 
sterilization procedure simply sterilizes the mucus layer and underlying skin. 

3. Before proceeding with the incision, remove the gauze containing chlorhexidine and gently wash the area with 
sterile normal saline (0.9% NaCl) over the sink or another bucket or tray. This procedure should not be repeated 3X 
like in the mouse since axolotl skin is sensitive to chemicals [40]. 

 
5. Describe the sterile techniques used for surgery.  Describe the use of surgeon’s clothing, drapes, and instruments.  

If sterile clothing, equipment, drapes, and instruments are used, describe how they are initially sterilized, and how 
they are kept sterile if used for more than one animal. 

1. The surgeon(s) shall wear at minimum a clean scrub shirt, gown or lab coat; since axolotl surgeries are at best clean-
contaminated, a cap and mask are optional but advised. The surgeon(s) shall wash their hands and puts on sterile 
gloves. 

2. Kimwipe™ laboratory tissues or gauze soaked in 50% Holtfreter’s solution shall be used to cover the rest of the 
axolotl’s main body mass, or the animal shall be immersed in 50% Holtfreter’s solution. 

3. Instruments are sterilized prior to surgery via steam autoclave. 
a. Instruments are wiped clean of debris then tips are re-sterilized with a glass bead sterilizer between animals. 
b. Instruments are re-sterilized by autoclave after each group of six (6) axolotls. 
c. An aseptic surface on which to place instruments during surgery will be provided. 

 
f. Post-operative care 
 

 Not Applicable; the surgery is non-survival 

 
1. Describe the expected condition of the animal following full recovery from surgical anesthesia.  If any physical or 

functional abnormalities are described, indicate their expected effect on the animal and their anticipated duration. 
Describe potential post-operative complications that might arise, and how they will be dealt with.  Do not include 
highly unlikely complications. 

1. After recovering from anesthesia and surgery, the axolotl should show purposed and organized limb movements. 
Branchial and gular respiratory movements should return and increase in frequency from what is used to determine 
depth of anesthesia (> 8 – 10 respirations / minute). 
a. If the animal is not showing recovery from anesthesia, additional time in an oxygenated water bath is 

recommended until normal limb movements and breathing patterns return. 
2. If the wound is slow to heal, additional administration of antibiotics is recommended. Also, the water temperature 

should be reduced by refrigerating the animals (while they are in their plastic tubs/mouse polys) at 5-7°C (41-45°F) 
to speed the healing process [50]. 

 
2. Provide a plan for post-operative monitoring and supportive care covering the period from end of surgery until the 

next morning.  Indicate what type of written post-operative monitoring and care records will be kept.  Describe what 
clinical signs will be used to determine if adequate analgesia is being provided.  In the table below, indicate what 
analgesic agents will be used during this time. 

Immediate Recovery Period 
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The period from cessation of anesthesia or completion of surgery until animal achieves normal ambulation and can eat 
and drink. 
1. After closing the incision, administer subcutaneous or intracoelomic postoperative fluids. Two easily formulated 

solutions for use in amphibian patients are (1) one part of saline (0.9% NaCl) mixed with two parts of 5% dextrose, 
and (2) seven parts of saline mixed with one part of sterile water. An appropriate dose of either solution is 25 mL/kg 
of body weight [40]. Fluids should be at room temperature or cooler. 

2. At the end of surgery, irrigation with fresh, de-chlorinated water or 50% Holtfreter’s solution will be performed until 
reflex movement is returned. 

3. After uncoordinated limb movements and branchial/gular respiratory movements return, the animal(s) will be 
placed into a fresh bath of 50% Holtfreter’s solution to allow full recovery from anesthesia. 

4. The analgesic regime will be followed as indicated in the approved protocol. Unless justification to the contrary is 
provided, all animals will receive at least 24 hours of analgesia following any surgical procedure. 

5. The procedure performed will be noted on the animal's cage card. 
6. If no complications arise, animal is monitored and care provided as described above every 30 to 60 minutes. 
7. Check on the transponder injection site to ensure the wound is still appropriately covered by wound glue. 
Once animal has normal ambulation, it will be returned to normal housing (original aquatic container) to the DLAR housing 
facility. Food will be provided following feeding protocol. Additional supportive care will be provided by the research team 
unless DLAR staff is directed to assume this responsibility. 

 

 
Post-operative sedation and analgesia (short-term – from surgery until the following morning) 
 

Species/Procedure Sedative Dosage/Route/ Frequency Analgesic Dosage/Route/ Frequency 

Axolotl / Post-
operative follow up 

N/A N/A Buprenorphine 
 
 
Or: 
Butorphanol 

Target = 50 mg/kg (Published 
Range = 0.2 – 75 mg/kg) / 
Intracoelomic / q24h for 48h. 
 
Target = 0.5 mg/L 50% Holtfreter’s 
solution / Transcutaneous & 
Branchial / Continuous for 48h 

 
3. Provide a plan for post-operative monitoring and supportive care for the period from morning after surgery and for 

the next 9 days.  Describe what clinical signs will be used to determine if adequate analgesia is being provided.  In 
the table below, indicate what analgesic agents will be used during this time. 

Long Term Recovery Period 
The period when normal activity returns while the incision completely heals. 
1. Research staff will check on the animal early the following day and at least 4X daily thereafter for postoperative days 

1 & 2. 
a. Research staff will ensure that the animal is eating, drinking, eliminating, and ambulating normally. Also, body 

weight should be obtained on a frequent basis (daily for the first four days after surgery [or until the animal is 
sacrificed], then every other day thereafter until the animal is sacrificed for heart tissue harvesting). 

2. Food shall be offered starting on postoperative day 1 (cardiac surgery is day 0). 
3. For 3-5 days following surgery (as applicable by experimental design of sampling procedures), the animals shall be 

given daily injections of enrofloxacin/Baytril® (Dosage: 5 mg/kg, Recommended: Dilute stock Baytril® solution from 
22.7 mg/mL to a 5 mg/mL concentration) intracoelomically [46]. 

4. Daily assessments of the wounds for any complications should occur up to suture removal (7-10 days) and for a few 
days afterwards. Additionally, check on the transponder injection site to ensure the wound covered by cyanoacrylate 
is healing properly. 

5. The incision site is checked for clear or purulent discharge, redness, swelling, pain, suture removal by the animal, or 
incision breakdown. 

6. Sutures shall be removed under anesthesia (0.1% tricaine methanesulfonate/MS-222) [40-42]. 

 
[   ] None 
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Post-operative sedation and analgesia (long-term) 
 

Species/Procedure Sedative Dosage/Route
/Frequency 

Analgesic Dosage/Route/ Frequency 

Axolotl / Post-
operative follow 
up 

N/A N/A Buprenorphine 
 
 
Or: 
Butorphanol 

Target = 50 mg/kg (Published Range = 0.2 – 75 
mg/kg) / Intracoelomic / q24h for 48h. 
 
Target = 0.5 mg/L 50% Holtfreter’s solution / 
Transcutaneous & Branchial / Continuous for 48h 

 
4. Who (individual or group of people) will be responsible for post-operative care during regular working hours?  Who 

will provide care, if necessary, after regular work hours (including weekends and holidays)? 

Post-operative care during regular working hours: DLAR staff and PI. 
Post-operative care after regular working hours: PI. 

 
g. How will the animals be monitored for adverse effects?  Describe any potential effects. 
 

Research staff will check on the animal per the axolotl care and husbandry SOP that will be developed by PI and Attending 
Veterinarian (AV). Please see that protocol (SOP No. 02.19.01) ways to monitor adverse effects and any potential effects. 
In short, DLAR staff will check on the animal at least daily. Research staff will ensure that the animal is eating, drinking, 
eliminating, and ambulating normally. For any abnormal signs or behavior, the PI and/or AV shall be contacted for guidance 
on next steps. 

 
VII. – EUTHANASIA AND ASSURANCE OF DEATH 

 
36. STATE the SPECIFIC CRITERIA for the euthanasia of abnormal or moribund animals (assume someone may have to euthanize 

animals IN YOUR ABSENCE).  Review the Defining Humane Endpoints Guideline. 
 

 Not Applicable  (e.g. animals are used for tissue harvesting only and will not undergo any procedures prior to death) 

 

X Weight loss of 20% or more 

X 
Other conditions (examples may include, but are not limited to: a clinical condition that does not respond to treatment, such 
as an infected surgical site; any condition that a veterinarian deems severe enough to warrant euthanizing the animal).  Please 
describe below: 

 

*Assessing Weight Loss: Consider euthanasia if animal’s weight loss is >20%. 
1. Each animal shall be weighed immediately prior to surgery. 
2. Each animal shall be weighed every day following surgery for the first 4 days. 
3. After the first 4 days post-surgery, animals can be weighed every other day until their hearts are sampled per the sampling 

schedule. Please see Question 31 for heart sampling schedule. 
 
**Axolotl (Ambystoma mexicanum) – The following criteria can stage severity of illness in axolotls. 
1. First signs of illness are: 

a. Loss of appetite; 
b. Deterioration of the gills; and/or 
c. Weight loss (you may see some anemia) of 20% or more. 

Health assessments shall be performed and isolation of the animal in cooler, antibiotic-laced baths (or housing in standard 50% 
Holtfreter’s solution with administration of antibiotics by IP) is recommended if first signs of illness are detected. 

2. More severely ill axolotls may be jaundiced and have small open skin sores. 
3. Very ill animals may develop ascites or severe edema. 
4. If animals do not respond to antibiotics and therapeutic baths, consider euthanasia. 
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**Mice (Mus musculus) – The following criteria from the Defining Humane Endpoints IACUC Guideline shall be used to define humane 
endpoints for euthanasia in mice. 
1. Weight loss (rapid or chronic; meeting or exceeding 20% body weight of age matched controls). 
2. Clinical conditions (rough hair coat, hunched posture, lethargy or recumbency, inactivity, non-responsive or reluctance to move 

with gentle stimulation, labored breathing/respiratory distress) unresponsive to treatment. 
3. Significant self-induced trauma. 
Any condition which interferes with the ability to eat/drink or ambulate. 

 
37. EUTHANASIA METHODS: 

PHS Policy on Humane Care and Use of Laboratory Animals requires the IACUC to use the recommendations of the AVMA 
Guidelines for the Euthanasia of Animals: 2013 Edition; please refer to it when necessary.  If anesthetic overdose or CO2 narcosis is 
used, a secondary procedure such as bilateral pneumothorax, severing the aorta, or removal of a critical organ must be used to 
assure that the animal will not recover. 
 

Species Method of Euthanasia* 
Dosage(s) 
(mg/kg) 

Route Method to Assure 
Death 

Axolotl 
(Ambystoma mexicanum) 

3-stage euthanasia 
protocol: 

1. Anesthesia 
2. Euthansia 
3. Removal of heart or 

decapitation and 
Pithing 

 
First induce surgical plane 
of anesthesia [0.1% MS-
222] 
Tricaine methanesulfonate 
baths [MS-222]. 

1 g/L followed 
by 5-10 g/L 
water baths. 

Branchial / 
Transcutaneous 

Removal of heart or 
decapitation followed 
by pithing. 

Axolotl 
(Ambystoma mexicanum) 

Perfusion with fixative 
under anesthesia  
 
First induce surgical plane 
of anesthesia [0.1% MS-
222] 
Tricaine methanesulfonate 
baths [MS-222]. 

1 g/L followed 
by 5-10 g/L 
water baths. 

Branchial / 
Transcutaneous 

Removal of heart or 
decapitation followed 
by pithing. 

Mouse 
(Mus musculus) 

Pentobarbital sodium 
140-210 
mg/kg 

IP 
Removal of heart, 
cervical dislocation or 
bilateral pneumothorax. 

Mouse 
(Mus musculus) 

Carbon dioxide (CO2) 
Displace 10-
30% of cage 
volume/min 

Inhalation 
Removal of heart, 
cervical dislocation or 
bilateral pneumothorax 

Mouse 
(Mus musculus) 

Induce anesthesia as 
outlined in Question 34.c.1. 
and continue with Heart 
Harvesting Procedure in 
Question 34.c. 

Pentobarbital 
sodium 
(Target Dose = 
70-80 mg/kg; 
Acceptable 
Dose Range = 
60-90 mg/kg) 
Isoflurane (3-
4% induction, 
1-3 % 

Pentobarbital Sodium: IP 
 
Isoflurane: Inhaled 

Removal of heart, 
cervical dislocation or 
bilateral pneumothorax. 
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maintenance) 
in 100% 
oxygen 

 
*If the method is not consistent with the AVMA Guidelines for the Euthanasia of Animals: 2013 Edition, please provide scientific 
justification for the use of the method below. 

N/A – Methods are taken from AVMA Guidelines for the Euthanasia of Animals: 2013 Edition, pgs. 48-50 and 76-78. 

 
a. Euthanasia of mouse and rat fetuses and neonates (Note: This question should not be marked as “Not Applicable” if 

breeding of animals will occur in house.) 
 

X Not Applicable 

 The Euthanasia of Mouse and Rat Fetuses and Neonates Guideline will be followed. 

 The Guideline will not be followed.  Describe variance and justify below.  

 

N/A 

 
b. Rodent Decapitation (if used as the primary method of euthanasia):  
 

X Not Applicable 

 Decapitation by guillotine; the Use of Guillotines Policy will be followed. 

 
Provide scientific justification below: 

N/A 

 
c. Cervical Dislocation (if used as the primary method of euthanasia):  
 

X Not Applicable 

 Animals will be anesthetized prior to cervical dislocation. 

 Animals will NOT be anesthetized. 

 
Provide scientific justification below: 

N/A 

 
38. If animals will not be euthanized, state their final disposition: 
 

X Not Applicable 

 

N/A 

 

 

ATTENTION:  
 
Please submit an Animal Hazardous Agents Form with this application as an attachment regardless of whether or not 
this protocol has any identified hazards.  The Office of Environmental Health and Safety (OEHS) is required to review 
and sign-off on every protocol prior to approval. 
 



www.manaraa.com

265 

 

VIII. – CONFLICT OF INTEREST DISCLOSURE 

 
Endorsements and Financial Conflict of Interest Disclosure: 
Objectivity in research is a key component of any research project.  One method for maintaining objectivity is to have all individuals 
involved in research design, development, or data evaluation/analysis disclose any potential and/or real financial conflict of interest.  
This includes all personnel listed on the protocol. 
 
Note that you are being asked about all financial interests related to your responsibilities at WSU or its affiliates, not just the 
financial interests that may be related the funded project. 
 
Examples of relevant relationships for potential conflict of interest include but are not limited to:  
1. Receiving past, current, or expecting future income in the form of salary, stock or stock options/warranties, equity, dividends, 

royalties, profit sharing, capital gain, forbearance or forgiveness of a loan, interest in real or personal property, or involvement 
in a legal partnership with the sponsor; 

2. Receiving past, current, or expecting future income in the form of consulting fees, honoraria, gifts, gifts to the University, or 
payments resulting from seminars, lectures, or teaching engagements, or service on a non-federal advisory committee or review 
panel;  

3. Serving in a corporate or for-profit leadership position, such as executive officer, board member, fundraising officer, agent, 
member of a scientific advisory board, member of a scientific review committee, or member of a data safety monitoring 
committee, regardless of compensation;   

4. Inventor on a patent or copyright involving technology/processes/products licensed or expected to be licensed to the sponsor. 

IX. – CERTIFICATION BY PRINCIPAL INVESTIGATOR 

 
As principal investigator I certify the following: 
 
1. My staff and I will comply with all standards for animal care and investigation established in the Guide for the Care and Use 

of Laboratory Animals (the Guide, NRC 2011) and the Federal Animal Welfare Act, and will follow all policies established by 
the University to assure that these standards are met. 

2. I assume responsibility for the work described here. 

3. All individuals working with the animals on this protocol are qualified by virtue of training or experience to perform proper 
handling, experimental, and restraint techniques required for the species to be used. 

4. I recognize my responsibility to identify occupational health hazards related to this protocol including identifying hazards, 
providing the necessary training for those involved, and supplying the appropriate protective clothing and equipment to 
minimize the risks. 

5. I acknowledge my responsibility to file the appropriate paperwork (e.g. an annual inventory to the State of Michigan) if I use 
controlled substances. 

6. This research does not represent unnecessary duplication of previous experiments. 

7. I realize that failure to adhere to policies related to animal care and use may result in suspension or revocation of 
permission to perform animal research in Wayne State University facilities. 

• For additional requirements and expectations please see the Principal Investigator Responsibilities. 
 

   
Signature of Principal Investigator 
(must be original; no copies, image files, etc.) 

 Date 

 
Do you, your spouse or domestic partner, or any of your dependent children have a potential conflict of interest with the sponsor 
of this project? Either YES or NO must be marked by hand at the time of the signature. 
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 NO 

 YES* 

 
*A “Financial Conflict of Interest Detailed Disclosure Form” must be filed with the Financial Conflict of Interest Committee 
annually or when changes occur.  Find the form and more information on the Conflict of Interest Website. 

 
X. – CERTIFICATION BY CO-INVESTIGATOR OR FACULTY ADVISOR 

 
As the Co-Investigator or Faculty Advisor I certify the following: 
 
I have read this protocol, understand my role in the project, and will comply with all standards for animal care and investigation 
established in the Guide for the Care and Use of Laboratory Animals (the Guide, NRC 2011) and the Federal Animal Welfare Act, and 
will follow all policies established by the University to assure that these standards are met. 

 

   
Signature of Co-Investigator or Faculty Advisor 
(must be original; no copies, image files, etc.) 

 
Date 

   

   

Name (Type/Print)   

   

   

University Title  (Type/Print)   

 
Do you, your spouse or domestic partner, or any of your dependent children have a potential conflict of interest with the sponsor 
of this project? Either YES or NO must be marked by hand at the time of the signature. 

 NO 

 YES* 

 
*A “Financial Conflict of Interest Detailed Disclosure Form” must be filed with the Financial Conflict of Interest Committee 
annually or when changes occur.  Find the form and more information on the Conflict of Interest Website. 

 
XI. – DEPARTMENT CHAIRPERSON, DIRECTOR, OR DEAN'S ASSURANCE 

 
I endorse the certifications made by the Principal Investigator and assure the University that the procedures outlined above have 
been or will be reviewed for scientific or educational merit by an internal or external review panel prior to initiating the project. 
 

   
Signature of Chairperson 
(must be original; no copies, image files, etc.) 

 Date 

   

   

Name (Type/Print)   

   

   

University Title (Type/Print)   
 
Do you, your spouse or domestic partner, or any of your dependent children have a potential conflict of interest with the sponsor 
of this project? Either YES or NO must be marked by hand at the time of the signature. 

 NO 

 YES* 
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*A “Financial Conflict of Interest Detailed Disclosure Form” must be filed with the Financial Conflict of Interest Committee 
annually or when changes occur.  Find the form and more information on the Conflict of Interest Website. 
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XII. – RESEARCH PERSONNEL 

 
All laboratory personnel listed in Question #5 must sign (original signatures; no copies, image files, etc.) below and disclose any 
potential conflict of interest with this project.   
 

*If there is a potential conflict of interest, then a “Financial Conflict of Interest Detailed Disclosure Form” must be filed with 
the Financial Conflict of Interest Committee annually or when changes occur.  Find the form and more information on the 
Conflict of Interest Website.  Either YES or NO must be marked by hand at the time of the signature. 

 

NAME:  
 

TITLE:  
 

Do you, your spouse or domestic partner, or any of your dependent children 
have a potential conflict of interest with the sponsor of this project?  
 

 NO   YES* 

I have read this protocol, understand my role in the project, and will comply with all standards for animal care and investigation 
established in the Guide for the Care and Use of Laboratory Animals (the Guide, NRC 2011) and the Federal Animal Welfare Act, 
and will follow all policies established by the University to assure that these standards are met. 

 
Signature:  

 
Date:  

 
 

NAME:  
 

TITLE:  
 

Do you, your spouse or domestic partner, or any of your dependent children 
have a potential conflict of interest with the sponsor of this project?  
 

 NO   YES* 

I have read this protocol, understand my role in the project, and will comply with all standards for animal care and investigation 
established in the Guide for the Care and Use of Laboratory Animals (the Guide, NRC 2011) and the Federal Animal Welfare Act, 
and will follow all policies established by the University to assure that these standards are met. 

 
Signature:  

 
Date:  

 
 

NAME:  
 

TITLE:  
 

Do you, your spouse or domestic partner, or any of your dependent children 
have a potential conflict of interest with the sponsor of this project?  
 

 NO   YES* 

I have read this protocol, understand my role in the project, and will comply with all standards for animal care and investigation 
established in the Guide for the Care and Use of Laboratory Animals (the Guide, NRC 2011) and the Federal Animal Welfare Act, 
and will follow all policies established by the University to assure that these standards are met. 

 
Signature:  

 
Date:  

 
 

NAME:  
 

TITLE:  
 

Do you, your spouse or domestic partner, or any of your dependent children 
have a potential conflict of interest with the sponsor of this project?  
 

 NO   YES* 

I have read this protocol, understand my role in the project, and will comply with all standards for animal care and investigation 
established in the Guide for the Care and Use of Laboratory Animals (the Guide, NRC 2011) and the Federal Animal Welfare Act, 
and will follow all policies established by the University to assure that these standards are met. 
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Signature:  

 
Date:  
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APPENDIX C: GLAS Grant Submission 

 

This checklist is intended to help you organize the information needed for this application and track the sections 

completed.  Please insert a checkmark by clicking each box on the pertinent list to indicate sections and actions 

completed on the application.  

Standard Grant Checklist

 Section A. General Information 

☐Research study title 

☐Funds requested 

☐Documentation of approval by institutional committee(s), or equivalent 

☐Status of business/financial interest 

☐Status of alternative/supplemental funding  

☐Did you submit a prior application? 

☐ Is this application a resubmission and have you addressed issues raised in the prior review? 

☐Have you received a previous award? 

☐Section B. Contact Information  

  Principal investigator, co-investigator(s) 

  Principal investigator’s AALAS membership number 

  Institutional representatives  

  Signatures of principal investigator and authorized institutional official 

Section C. Abstract and Hypothesis 

Abstract: 250 word maximum 

Hypothesis: 250 word maximum 

Section D. Proposal: 6 page maximum 

Appendix included, if applicable 

Preliminary Work 

Statement of Work 

Anticipated Outcome(s) 

Anticipated Pitfall(s) 

Section E. Facilities and Equipment: 1 page maximum

Section F. Budget  

Section G. Supporting Information 

References cited in the proposal: 1 page maximum 

Biographical sketches of all investigators:  

2 page maximum per person 

Disclosures: 1 page maximum  

Other support sources: 1 page maximum  
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Submit your application for a Standard GLAS application as a Microsoft Word document and in 

a single file containing all application sections. 

• Please do not convert the Word file to another file format or adjust the document margins 

(1 inch all around) or the page size (8.5 x 11 inches). 

• Keep the text single-spaced, black, and in a Times New Roman font of 12 point or larger. 

• You may delete the application instructions in each section to save space. 

• Please observe the formatting requirements (see above instructions) and the page limits 

for each section; applications that exceed these limits will be disqualified. 

• When completed, upload your application document (in docx format) to the GLAS 

Submittable website. Instructions for online submission of applications are at: 

https://www.aalas.org/glas 

• Do not email this document to AALAS as your GLAS application; emailed 

applications will NOT be accepted for review. 

• Signatures (page 5) may be sent as electronic signatures or images within the Word 

document, or you may submit (upload) the signed signature page as a separate PDF file. 

 

Section A.  General Information for a Standard GLAS Application 

 

1. Research Study Title: Efficacy of buprenorphine and butorphanol in relieving pain in a 

surgical model in axolotls. 

 

2. Funds Requested (USD): $31,788 

 

3. Please indicate which documents will be submitted with your application. This will not 

affect the review process; however, grant awardees must submit these documents before 

funds can be disbursed. 


  IACUC Approval  ☐ IBC Approval  ☐ IRB Approval 

 Other (please describe)____________________________________________ 

 

4. Please indicate whether the principal investigator (PI) or a co-investigator (Co-I) has a 

business or financial interest in the proposed project. 

 

 ☒ No. 

  Yes.  Please disclose the business or financial interests in Section G. 

  

5. Please indicate whether the proposed study, or one similar, has been or will be submitted to 

other funding agencies.  
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  ☒ No. 

  ☐ Yes. Please list these funding agencies and provide more details in Section G.  

   

6. Is your institution willing to fund the balance of your project, if not all of your budget can be 

funded? 

 

 No. 

 Yes. 

 

7. Have you previously applied for a GLAS award? 

 

 No. 

 Yes. What was the year/s you applied?________ 

 

8. Is this application a resubmission? 

 

 No. 

 Yes. What was the last year of its submission?________ 

 

Please indicate how issues raised in review are addressed in this resubmission.  

1 page maximum 

 

9. Have you previously received a GLAS award? 

 

 No. 

 Yes. In what year/s did you receive a GLAS award?________ 

 

Section B. Contact Information 

 

1. Principal Investigator: 

Name: Tara Cotroneo 

Degree(s)/Credentials: DVM, DACLAM  

AALAS Membership Number: 

Title: Senior Clinical Veterinarian / Director, Veterinary Technical Services 

Institution: Wayne State University (WSU) 

Department: Research Support – Division of Laboratory Animal Resources (DLAR) 

Building and room number: Eugene Applebaum College of Pharmacy and Health Sciences 

– DLAR 

Street Address: 259 Mack Avenue, Suite 5116 

City: Detroit 

State or Province: Michigan 

Country: USA 

Zip or Postal Code: 48202 

Email: tara.cotroneo@wayne.edu 
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Phone: 313-577-1405 

FAX: 313-577-5890 (DLAR Business Office) 

Employment status (please check one): 

☒Employee 

Contractor 

 

2. Co-Investigators: 

(To add additional co-investigators, copy the following fields and insert them in the space 

below.) 

Name: Gerald Hish 

Degree(s)/Credentials: DVM, DACLAM 

Title: Senior Surgical Service Veterinarian / Director, Veterinary Surgical Services 

Institution: Wayne State University (WSU) 

Department: Research Support – Division of Laboratory Animal Resources (DLAR) 

Building and room number: Eugene Applebaum College of Pharmacy and Health Sciences 

– DLAR 

Street Address: 259 Mack Avenue, Suite 5116 

City: Detroit 

State or Province: Michigan 

Country: USA 

Zip or Postal Code: 48202 

Email: gerryh@wayne.edu 

Phone: 313-577-1236 

FAX: 313-577-5890 (DLAR Business Office) 

 

Name: Jeremy (Jay) T. Llaniguez 

Degree(s)/Credentials: BS/MS 

Title: Graduate Research Assistant, MD/PhD Candidate 

Institution: Wayne State University (WSU) 

Department: Biomedical Engineering (BME), School of Medicine (SOM) 

Building and room number: WSU/IBIO: Bio & Systems Engineering, Room 1420 

Street Address: 6135 Woodward Avenue 

City: Detroit 

State or Province: Michigan 

Country: USA 

Zip or Postal Code: 48202 

Email: jllanigu@med.wayne.edu 

Phone: 313-577-1360 

FAX: 313-577-8333 (BME Business Office) 

 

3. Institutional Grants Management Official: 
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Name: Danetta Smith 

Title: Grants Contract Officer III 

Institution: Wayne State University (WSU) 

Department: Division of Research – Sponsored Program Administration (SPA) 

Building and room number: Maccabees Building, Suite 13001 

Street Address: 5057 Woodward Avenue 

City: Detroit 

State or Province: MI 

Country: USA 

Zip or Postal Code: 48202 

Email: af6258@wayne.edu 

Phone: 313-577-2892 

FAX: 313-577-5055 

 

4. Financial Officer (to whom the check will be mailed): 

Name: Marlene Erno 

Title: Senior Director, Research Support Services 

Institution: Wayne State University 

Department: Division of Research – Sponsored Program Administration (SPA) 

Building and room number: Maccabees Building, Suite 13001 

Street Address: 5057 Woodward Avenue 

City: Detroit 

State or Province: MI 

Country: USA 

Zip or Postal Code: 48202 

Email: merno@wayne.edu 

Phone: 313-577-6594 

FAX: 313-577-5055 
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We, the undersigned, certify that the statements herein are true and complete to the best of our knowledge and 

agree to conform to the policies and rules governing this award. We agree to maintain records of grant 

expenditures for a period of 5 years, with the right of AALAS to audit same. 
 

The results generated by research must be published in a scientific journal, a public meeting presentation, or a 

published patent or patent application to satisfy the requirements of placing the research results in the public 

domain; and each entity or individual has the right to file and maintain patent applications and patents based on 

the research and results, and is not required to dedicate the patent rights to the public. 

 

Signature of Principal Investigator: ___________________________________ ___________  

 

   Date: _______________________________________________ 

 

Signature of Authorized Institutional Official: ______________________________________ 

 

   Date: _______________________________________________ 
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Section C. Abstract and Hypothesis/Goals 

 

Abstract 

Axolotls, capable of robust, life-long epimorphic regeneration, can recover from virtually any non-

fatal injury. Although observed to regenerate almost all body parts and internal organs, the 

signaling mechanisms and pathways mediating these abilities are not yet completely elucidated, 

allowing researchers to undertake these challenges and translate them to human medicine. To 

perform these studies, axolotls must undergo surgical manipulation. Although a significant body 

of knowledge on pain control exists in newts and frogs, caution is advised when applying doses 

and schedules to axolotls that diverged from the closest common ancestor 145 and 260-million 

years ago, respectively. Thus, guidance on analgesics in axolotls for animal welfare is lacking. In 

addition to animal welfare concerns, pain-induced stress is known to affect overall health and 

wound healing in animal and human patients. Therefore, we hypothesize that published doses of 

newt analgesia are not appropriate to control pain in axolotls. Furthermore, inappropriate pain 

control could show differences in tissue response during regeneration. The first aim of this study 

is to determine an effective opioid dose that will provide analgesia in axolotls. The second aim of 

our study is to determine whether the healing response in axolotls is affected by opioids 

administered at analgesic doses. The results will have a significant impact in establishing pain 

control in axolotls, ultimately guiding future studies that use this novel animal in regenerative 

medicine research. 

 

Hypothesis/Goals  

Recent studies comparing newt and axolotl forelimb regeneration have shown that proposed 

cellular mechanisms underlying the repair of skeletal muscle following limb amputation follow 

different pathways in the two amphibians14. The significant diversity in achieving epimorphic 

regeneration, even in these two related urodeles, suggests enough differences exist that simply 

translating protocols from newts to axolotls is ill-advised4. With clear differences in physiology, 

we hypothesize that simply using published doses from a newt study may show statistically 

different changes in nociception, but may not be optimized to show clinically significant pain 

control in axolotls. Furthermore, we believe that analgesic use will result in histologic differences 

in tissue regeneration after injury when compared to animals that don’t receive analgesics. 
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Section D. Proposal 

☒Appendix included. 

Preliminary Work: Past studies on opioid receptors in amphibians have described the 

subcutaneous (SC), intracoelomic (IC), intraspinal (IS), and intracerebroventricular (ICV) 

administration of opioids in these animals9,16,17. With the parenteral delivery of antinociceptives, 

no external confounds to the pharmacodynamics or pharmacokinetics are expected. However, for 

the transcutaneous delivery of butorphanol, its behavior in treated water appropriate for axolotl 

care is unknown. Commonly, tap water is treated using Kordon® NovAqua® Plus™ water 

conditioner and ammonia detoxifier AmQuel® Plus™ with the addition of various salts to make 

50% Holtfreter’s solution. The only study identified in a publication search that used a 

transcutaneous method of butorphanol delivery in newts9 used aged tap water (tap water that is 

allowed to sit in an open container to allow chlorine and other dissolved gases to dissipate). Since 

the husbandry of axolotls uses chemically conditioned water with additional buffering salts, 

characterizing how axolotl water interacts with butorphanol is necessary in order to properly 

compare the efficacy of transcutaneous butorphanol against the efficacy of parenteral 

buprenorphine. 

(A)  (B)  
Figure 1 (A) Characteristic elution curves of butorphanol (~2 min) in axolotl water using a 

solution of target-dose butorphanol aged before running the HPLC characterization. The curves 

have been shifted to a zero baseline. (B) Area under curve (AUC) for identified peak at various 

time points for the butorphanol degradation sample. 

The dosing frequency from the newt study9 was a single bolus of 0.5 mg/L (tank water) of 

butorphanol for the 72-hour recovery period. In our approved animal protocol governing axolotl 

procedures at Wayne State University (WSU), a daily water change is specified. Therefore, 

samples of “aging” butorphanol water were analyzed at multiple time points during the first 24 

hours to determine if there was any background degradation of butorphanol that would require 

additional “maintenance” doses prior to the daily cage change. Characteristic HPLC elution curves 

for the aging, degradation samples are shown in Figure 1A. Inspecting these curves shows that the 

shape of the butorphanol peak (~2 min) does not appreciably change over a 72 hour period, well 

beyond the 24 hour maximum interval between cage changes. Graphing the percent AUC (total 

compound detected) over all the time points also shows a mean value without an apparent declining 

trend over time (see Figure 1B). Running an ANOVA also shows that there are no significant 

differences between the samples when correcting for multiple comparisons. From this data, we can 

conclude butorphanol does not degrade when exposed to the chemicals used to treat tap water for 

Butorphanol 

Sample reference peak 
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use with amphibians, nor does it have any undue interaction with the salts in the axolotl water 

(50% Holtfreter’s solution). 

Using this information, studies on pain response were carried out with small numbers of animals. 

Manual von Frey [vF] aesthesiometers (Touch Test Sensory Evaluator, Stoelting, Wood Dale, IL) 

were used on the dorsal surface of the animal, lateral to the dorsal fin, generally in line with the 

forelimb. To ascertain if the animals’ pain response shows hysteresis, the process of probing the 

animals with the evaluators was repeated in reverse, starting with an evaluator at a higher indicated 

force, and then progressively using evaluators that deliver less force until the animals no longer 

showed a response. A final sweep applying evaluators with increasing force was performed until 

the animal again showed a positive response. The three sweeps of evaluators (increasing force, 

decreasing force, increasing force) were considered one sensory test. Baseline responses were 

performed after the animals had at least 48-hours to acclimate to the WSU facility. Butorphanol 

(0.5 mg/L) was administered to five animals at the published doses9, and one animal was treated 

using butorphanol after a surgical procedure on the heart. Table shows the newt doses seem to 

blunt the response on some animals (IDs 1, 2, and 11) but produced hyperalgesia in others (IDs 12 

and 15). While the results of this limited pilot do show some inconsistencies, subjective assessment 

of the responses of four of the animals (1,2,5, and 11) suggests that vF aesthesiometry may be 

useful in evaluating analgesic efficacy in 

axolotls. This work also demonstrates the 

technical feasibility of adapting vF fibers to 

this aquatic species and additional evaluation 

with a larger number of animals will help 

bolster our confidence in the statistical value 

of our results. In addition, unlike the fixed 

force delivered by the manual evaluators, use 

of an electronic vF aesthesiometer will allow 

force to be applied along a continuous scale 

allowing for more rapid, precise 

measurements. We believe that this will 

improve the quality of the collected data and have incorporated it as part of the proposed statement 

of work. 

Statement of Work: While developing surgical procedures to induce a myocardial infarction in 

axolotls, guidance on analgesics in amphibians for appropriate animal welfare was lacking. 

Federally funded animal research must adhere to the Public Health Service Policy on Humane 

Care and Use of Laboratory Animals, which states that “procedures that may cause more than 

momentary or slight pain or distress to animals will be performed with appropriate sedation, 

analgesia, or anesthesia” unless the procedure is justified for scientific reasons in writing by the 

investigator10. Given the nature of regenerative medicine research, animals are frequently 

subjected to surgical injury in order to observe the healing process. Potential experimental 

confounders include the impact of opioids on wound healing1 and immune function. 

Morphine, the prototypical μ receptor agonist, increases corticosteroid secretion and decreases 

natural killer cell activity8,11. Overall, morphine administration leads to suppression of 

inflammatory cell proliferation, with an increase in proinflammatory mediators and decrease in 

anti-inflammatory mediators11. However, studies have demonstrated that buprenorphine can be 

safely used in models of sepsis in mice8. It has been demonstrated that the immune response is 

directly involved in healing and regeneration in axolotls5,6. Extrapolating from studies in mice, 

Animal 

ID 
Baseline 

Butorphanol 

Treatment 

Surgery 

With 

Analgesia 

1 0.020 0.580 N/A 

2 0.400 1.400 N/A 

5 0.020 N/A 0.115 

11 0.500 1.000 N/A 

12 0.600 0.070 N/A 

15 0.400 0.040 N/A 

Table 1: Median force (in grams) eliciting a 

positive "pain" response in individual axolotl. 
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buprenorphine has been shown to have less impact on the immune system compared with other 

opioid analgesics (morphine). However, this relationship has not been established in amphibians. 

Since our model is dependent upon a robust immune response, the impact opioids may have on 

tissue regeneration must be established. 

The few studies which are available concerning antinociception in amphibians have used frogs 

(Xenopus laevis and Rana pipiens) and newts (Notophthalmus viridescens). A recent book chapter4 

cautioned the direct application of amphibian protocols and findings in different species to 

procedures for axolotls (Ambystoma mexicanum), citing that although they are all amphibians, the 

different species are not closely related to each other. This divergence is evidenced by the fact that 

newt regeneration and axolotl regeneration after limb injury is driven by different mechanisms14. 

With sufficient differences in physiology, a study on the appropriate antinociceptives and their 

administration (dosage and frequency) in axolotls is needed.  

While there are several demonstrated difference between these disparate groups it has been shown 

that A and C nociceptive fibers are present in most vertebrate animals, including amphibians2,7,15. 

Although axolotls are classified in a different family and order from newts and frogs respectively, 

it is expected that pain receptors are likely conserved within the class. However, nociceptor fiber 

distribution and number may vary15. Previous studies in frogs (Rana pipiens and Xenopus laevis) 

have described mechanical, thermal, and chemical methods to assess pain and analgesic efficacy18. 

In addition, a recent study in newts (Notophthalmus viridescens)9 used qualitative behavioral 

observations to show the efficacy of opioids (buprenorphine and butorphanol) after limb 

amputation. Therefore, quantitative assessment methods (vF and acetic acid test [AAT]) may work 

in axolotls, but will likely need to be modified to produce a repeatable result within this species. 

In addition, behavioral assessments (provoked/unprovoked movement, body posture, food 

consumption) can be applied to the axolotl to monitor general health and welfare. Our laboratory 

has performed preliminary studies with a small number of axolotls using vF aesthesiometers to 

evaluate response to mechanical stimuli and video tracking software to quantify movement. These 

studies have shown a repeatable response to the vF fibers. The mechanical vF evaluators have 

provided useful data, but an electronic vF evaluator will provide further refinement and increase 

the accuracy of our quantitative assessment. In addition, we propose to evaluate a modified AAT 

to determine if this can be used as a quantitative assessment of pain in axolotls. Based upon the 

results of this work, quantitative measurements will be used to optimize an opioid analgesic 

regimen to use in a surgical model in axolotls. 

Specific Aim 1: Determine optimal analgesic dosing in a surgical model in axolotls: Design: 

Experiment 1: Validate quantitative methods using naïve animals. For this experiment two 

different quantitative techniques, von Frey fibers and a modified acetic-acid wiping test, will be 

evaluated in naïve axolotls to determine which method produces more consistent responses. Each 

technique (vF or AAT) will be evaluated with a different group of six animals. The animals’ 

response to noxious mechanical and chemical stimulation will be measured with an electronic vF 

aesthesiometer or different concentrations of acetic acid, respectively, to establish a baseline 

response. The quantitative method which produces the most repeatable results will determine 

which technique will be utilized in subsequent experiments. 

Experiment 2: Using validated quantitative methods, determine optimized analgesic doses. We 

will evaluate the effects of different doses of butorphanol and buprenorphine on quantitative and 

behavioral parameters (see Table 2). Six animals will be assigned to each analgesic group, 

buprenorphine or butorphanol (low [L], medium [M], or high [H] dosage). 
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Experiment 3: Evaluate optimal analgesic dose in a surgical model in axolotls. Three surgical 

groups of animals (6 per group, receiving either butorphanol, buprenorphine, no analgesic) will 

undergo mechanical induction of cardiac ischemia. Using data from Experiment 2, animals will 

receive optimized analgesic doses. The same evaluation criteria and schedule (behavioral and 

quantitative methods) that were used in Experiment 2 will be used in Experiment 3 however the 

0-hour time point will be designated as the point of recovery from anesthesia. 

Table 2: Study schedule for each dose (L,M, and H) in Experiment 2. 

Test 
Baseline Analgesia Assessments Analgesia Assessments 

-24h 0h 1h 6h 12h 24h 25h 31h 36h 48h 

Quantitative test 

(vF or AAT) 
✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

Cageside ✓  ✓ ✓   ✓ ✓   

Video  ✓ (x2)*  ✓  ✓ ✓   ✓ ✓ 

Feeding ✓   ✓    ✓   
*Two measures in 24 hours 

Specific Aim 2: Determine whether, and to what degree, opioid analgesics affect tissue 

healing and regeneration in an axolotl surgical model. Design: Experiment 4: Compare the 

histologic differences in healing response after mechanically inducing ischemia in an axolotl 

heart, with and without the administration of opioid analgesia. Three surgical experimental groups 

(buprenorphine, butorphanol, and no analgesia) of naïve axolotls will undergo mechanical 

induction of cardiac ischemia using the same doses utilized in Experiment 3. Each experimental 

group will consist of 18 animals; 6 will be humanely euthanized at each of three post-operative 

timepoints (12 hr, 2 days, 7 days). These timepoints were selected based upon observations from 

pilot studies we have performed examining cardiac histology in axolotls following mechanical 

ischemic injury. Following euthanasia, cardiac tissue will be collected for histologic processing 

and analysis. Quantitative and behavioral assessments will be performed as described in Table 2 

for each group as allowed until the time of euthanasia. 

Detailed Methods: Experimental animals: Male and female, wild-type (WT) axolotls 

(Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY) will be individually 

housed in large, polypropylene rat cages in a vivarium controlled between 60-60°F (15.6-18.9°C) 

maintained at a 12:12-h light:dark cycle. Water will be treated to remove ammonia, chlorine, and 

metals and then mixed with appropriate salts to create 50% Holtfreter’s solution (homogenous 

mixture of ionic particles). The animals will be fed (Soft Moist Salmon Diet, Rangen, Inc., Buhl, 

ID) three days per week (MWF). All animals will be acclimated for 5-7 days before any 

experiments are conducted. All procedures are approved by the Institutional Animal Care and Use 

Committee (IACUC) of Wayne State University (WSU). Justification of numbers: A sample size 

of 6 animals per group was determined by assuming an =0.05 and a =0.05, while estimating a 

large effect size (=0.25 for laboratory-bred animals and assuming clear behavioral differences 

with and without antinociceptives3). When possible, animals will be used in multiple experiments 

however no animals will undergo more than one major surgical procedure. Analgesics: Two 

antinociceptives will be compared. Buprenorphine (Penro Specialty Compounding, Colchester, 

VT) shall be administered at one of three doses (low=25 mg/kg, medium=50 mg/kg, high=75 

mg/kg) as an intracoelomic (IC) injection every 24-hours for 48 hours. Butorphanol (MWI 

Veterinary Supply, Boise, ID) shall be administered at one of three concentrations (low=0.25 

mg/L, medium=0.50 mg/L, high=0.75 mg/L) directly into the 50% Holtfreter’s solution of the 

animal’s cage every 24-hours for 48 hours. The medium dose is based upon a published dose that 
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was effective in newts and the low and high doses are 50% lower or higher, respectively. When 

animals are used in more than one experiment, they will be provided a minimum of 1 week washout 

between treatments and must return to baseline behavior. Behavioral assessment: Feeding: At 

least one week of food consumption will be measured to establish a baseline intake. Also, feeding 

behavior (latency to feed) will be measured using a highly palatable treat, such as black worms. 

Additionally, the animals will be weighed 3 times a week at cage change (M,W,F) to assess body 

weight changes. Cageside Assessment: The animals will be assessed cageside by blinded operators 

at least twice daily at predetermined timepoints. Assessment methods will include observing body 

posture, responses after gently tapping on cage, squirting 3-5 mL of water from a syringe into the 

water surface to assess response to water disruption, and touching the animal. The animals will be 

scored using a binary system (response/no response)9. Video assessment: Animals will be 

videotaped in one hour segments at defined intervals during each experiment (See Table 2). Videos 

are quantitatively analyzed (EthoVision XT, Noldus, Leesburg, VA) to assess spontaneous 

movement. Behavior such as total distance moved, tail curling, gill position, any abnormal signs 

of posture, spurts of movement, and any flipping/rolling around the body axes will be noted. 

Quantitative tools to measure pain: Stimulation with vF filaments: . Using electronic vF device, 

Increasing pressure is applied at the site of evaluation (lateral to dorsal fin, inline with forelimb) 

until nociceptive behavior is observed at which point the applied force is recorded. Acetic acid 

test: Axolotls will be placed in a polypropylene mouse cage with enough 50% Holtfreter’s solution 

to cover half of its body, leaving the dorsal surface above the waterline. The AAT is performed 

according to previously published reports in frogs18. Glacial acetic acid is serially diluted to 

produce 10 dilutions evenly spaced on a logarithmic scale. Testing is performed by placing a single 

drop of the weakest concentration acetic acid on the same location described above for the vF 

Fibers. The animal will be observed for a repeatable behavioral response (wiping, turning, escape 

behavior). If a response is not observed within 5 seconds the area is rinsed using 50% Holtfreter’s 

solution. Testing on the opposite side using the next highest concentration will occur. The testing 

continues until the nociceptive threshold is reached which is the highest concentration to produce 

a response. If no response is observed with the highest concentration the nociceptive threshold will 

be designated at 10, consistent with the highest concentration of acetic acid. Mechanically induced 

cardiac ischemia: Surgical procedure: Animals will be fasted for at least 24 hours in order to avoid 

emesis during anesthesia induction and to reduce stomach volume for organ movement. Anesthesia 

will be induced by placing the animal in a water bath with 0.1% tricaine methanesulfonate (MS-

222). Though aseptic surgical technique will be used, a single dose of enrofloxacin will be 

administered pre-operatively as amphibian procedures are considered “clean-contaminated” at 

best. Analgesics shall be administered up to 1h prior to surgery. Anesthesia will be maintained by 

covering the animal in gauze sponges moistened with MS-222 in 50% Holtfreter’s solution. The 

ventral surface of the thorax will be disinfected by placing sterile gauze soaked in chlorhexidine 

solution (0.75%) or benzalkonium solution (2 mg/L) for 5-10 minutes at the intended site of 

incision followed by irrigation with sterile normal saline (0.9% NaCl). The heart will be exposed 

and the apex of the ventricle will be mechanically clamped for at least 30 minutes to reduce the 

blood flow to the region to ensure irreversible cellular damage13, inducing myocardial injury by 

ischemia. The cardiac cavity will be lavaged with saline and the body wall and skin will be 

individually closed with a monofilament, non-absorbable suture. All surgeries will be performed 

by a single surgeon and all surgeries will be completed in the morning on any given day. For 3-5 

days following surgery (as allowed by each experimental schedule), the animals shall be given 

daily IC injections of enrofloxacin. Post-operative care: Food shall be offered starting on 
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postoperative day 1 (surgical procedure is day 0). The surgical wound will be assessed daily for 

any complications until suture removal (5-7 days) and for a few days afterwards. For nuclei 

labeling index studies in Experiment 4, each animal will be injected with BrdU [30 mg/kg, 

intracoelomic] three hours prior to collecting the heart. Tissue staining: Harvested hearts will be 

fixed in formalin, dehydrated in 20% sucrose, and embedded in Tissue Freezing Medium. Mounted 

sections will be stained using Goldner’s Trichrome or Picrosirius Red methods. Tissue will be 

processed by the graduate student co-investigator using staining supplies and protocols from 

Electron Microscopy Sciences (Hatfield, PA). Staining times are optimized to ensure good contrast 

in axolotl tissue. Tissue Analysis: Tissue staining will identify areas of necrotic, perinecrotic and 

penumbral tissue. Cellular proliferation activity in the penumbra will be indexed by staining with 

antibodies specific for BrdU. Studies of cardiac myofibrillogenesis describe the myofibril 

assembly process as a transition through three types of fibrils: premyofibrils containing non-

muscle myosin IIB; nascent myofibrils containing both non-muscle myosin IIB and muscle-

specific myosin II; and mature myofibrils containing only muscle-specific myosin II12. All tissue 

samples will be stained with antibodies for proteins of myofibrillogenesis and stem cell markers; 

10 high-powered views will be evaluated under microscopy to observe statistical differences in 

histology. Data analysis and statistics: With each animal serving as its own control, self-paired, 

two-tailed t-test statistics can be used to compare the means of quantitative behavior assessments. 

A one-way ANOVA will be used to assess differences across time points. If the data cannot be 

appropriately assessed by assuming a normal distribution (or are non-interval data), the non-

parametric equivalent of the t-test and ANOVA shall be used. When data cannot be evaluated by 

parametric methods, the Mann-Whitney/Wilcoxon Rank Sum test will be used to evaluate 

differences from baseline, while the Kruskal-Wallis analysis of variance will be used to evaluate 

differences across time points. SPSS (IBM Corporation©, Version 23) software will be used to 

compute statistics. 

Study Timeline: Specific Aim 1: Q3 2016 – Q4 2016; Specific Aim 2: Q4 2016 – Q1 2017. 

Studies will be completed by the graduate student (co-investigator) and DLAR staff, with the 

veterinarians (PI and co-investigator) providing oversight on animal welfare and data analysis. A 

manuscript and national presentation of data will be completed within 18 months of funding. 

Anticipated Outcome(s): The immediate expected outcomes will be the reduction of pain and 

stress in axolotls planned for higher-powered studies in regenerative medicine at WSU. For the 

field in regenerative medicine, the long-term results will have a significant impact in establishing 

pain control in axolotls, ultimately guiding future studies that use this novel animal in studies in 

regenerative medicine. Characterization of the affects of opioid analgesics on tissue regeneration 

will be useful for investigators when determining which analgesic may have the fewest impacts on 

their specific models.  

Anticipated Pitfall(s): The current approach to elicit a nociceptive response in axolotls relies on 

stimulating the animal just lateral to the dorsal fin, in line with its forelimb. However, in the 

integumentary system of salamanders, in contrast to the cold/heat receptors and tactile receptors 

located in the epidermis, the pain and pressure receptors are situated in the dermis. Thus, the vF 

anesthesiometers may be stimulating tactile receptors and not pain receptors. Additionally, while 

several behaviors observed in newts may be useful in evaluating analgesic efficacy in that 

species, it is unclear whether these same behaviors will be useful in axolotls. Given the lack of 

any established pain related ethograms specific to axolotls, the published data in newts is the 

most promising starting point.  
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Section E. Facilities and Equipment 

1 page maximum 

Describe the facilities to be used and the available equipment. 

Laboratory: The co-investigator’s sponsor has dedicated wet laboratory space (~1000 square 

feet in size with ~450 square feet of bench space) located in the Integrative Biosciences Center 

(IBio) at Wayne State University. The laboratory is designed for DNA cloning; Southern blot 

and PCR genotyping; expression analyses in mammalian cells/tissues by RNA and protein 

characterization, immunocytochemistry, immunohistochemistry, histology, and radiochemical 

labeling. Dedicated areas are defined for working with tissue samples for fixing, sectioning, 

staining, and performing immunohistochemistry, along with a dedicated room for cell-cultures. 

The following are dedicated equipment in the Sponsor’s laboratory. This equipment caters to 

tissue sample preparation: 

• Shel Lab Vacuum Oven: This oven/incubator is used to hold reagents at a certain 

temperature for proper staining of tissue samples. 

• Hacker Instruments & Industries (H/I) Bright OTF5000 Cyrostat/Microtome: This 

cryo-microtome is used to prepare tissue sections for histology staining and 

immunohistochemical studies. 

• Premiere® XH-2001 Slide Warmer: Slide warmer to attach tissue sections to slides 

after slicing. 

• Olympus IMT Inverted Tissue Culture Microscope: This microscope is used for 

checking slides before scanning. 

• EVOS® FL Auto Imaging System: This is a fully-automated, inverted, transmitted-

light imaging system. This is used to perform and record high-resoltion scans of 

prepared tissue sections. 

• Adjustable Pipettes (multiple volume limits): These are used to prepare solutions, 

drugs, and reagents. 

Animal Facilities: Axolotls are housed in an Association of Assessment and Accreditation for 

Laboratory Animal Care- (AAALAC) accredited vivarium located in facilities supervised by 

Animal Facilities Core/Division of Laboratory Animal Resources (DLAR) located in the 

basement of the new Integrative Biosciences Center. The vivarium is 15,328 gsf and contains 

12 animal rooms, a procedure room with fume hood, a behavioral suite, a telemetry suite, an 

embryo transfer suite, and a surgical suite. The WSU Division of Laboratory Animal Resources 

(DLAR) staffs and manages all animal facilities.  Animal care is directed by an ACLAM board-

certified veterinarian who serves as the Attending Veterinarian and the Senior Director of 

DLAR. The two DLAR clinical veterinarians are board certified by the American College of 

Laboratory Animal Medicine (ACLAM).  Veterinarians are on-site during normal working 

hours, and are available by pager 24 hours a day, 7 days a week, 365 days a year.  Licensed 

Veterinary Technologists provide animal husbandry, technical assistance, and training.  Many 

DLAR staff members hold certification by the American Association of Laboratory Animal 

Science (AALAS).   

Video recording hardware, purchased as a commercially available, home-based security 

surveillance system (Lorex, Model No. LH03081TC4), has been installed on the axolotl caging 

rack. Each day/night camera is positioned to record up to three animals. Video files are 

downloaded and edited/spliced with Windows® Movie Maker. 



www.manaraa.com

285 

 

Section F. Budget 

Animals, Supplies, and Equipment (Itemize by category)  TOTALS 

Animal Numbers: 

Experiment 1: 6 axolotls/group x 2 groups = 12 axolotls 

Experiment 2: 6 axolotls/group x 6 drug/dose groups  

                        (Re-use 12 animals from Experiment 1 + 24 additional animals) 

Experiment 3: 6 axolotls/group x 3 groups  

                        (Re-use 12 animals from the low dose groups in Experiment 1 + 

                         6 additional axolotls for no the analgesic group) 

Experiment 4: 6 axolotls/group x 3 groups x 3 sample endpoints = 54 animals 

Total Animals = (12 + 24 + 6 + 54) x 10% (unexpected attrition) = 106 

Animals: 

Axolotls, Wild Type, Adult, Non-Breeding, Quantity of 106 ($25/each) 

Shipping/Handling ($7/animal) = $7 x 106 

Per Diem: 

- Acclimation: 5 days x $0.88 animal/day x 106 animals 

- Daily Care: 

- Experiment 1 = 2 days 

- Experiment 2 = 5 days 

- Experiment 3 = 10 days (Including time for drug washout for non-naïve animals) 

- Experiment 4 = (9 x 1d) + (9 x 2d)+(9 x 7d)=90 animal-days 

- Cost: [2 days x $0.88/animal-day x 12 animals]+[5 days x 36 animals x $0.88/animal-

day]+[10 days x 18 animals x $0.88/animal-day] + [$0.88/animal-day x 90 animal-days] 

Supplies: 

Buprenorphine (10 mg/mL, $340 per 12-mL multi-dose vial), Quantity of 3 

Butorphanol (10 mg/mL, $70 per 10-mL multi-dose vial), Quantity of 2 

Sodium Chloride, 5kg bottle, Quantity 2 ($178/each) 

Potassium Chloride, 1 kg bottle, Quantity 2 ($115/each) 

Calcium Chloride, 0.5 kg bottle, Quantity of 4 ($210/each) 

Sodium Bicarbonate, 5 kg bottle, Quantity 2 ($175/each) 

BrDU, 3 mg/mL, 15 mL bottle, Quantity 5 ($69.00 each) 

Rangen Sinking Pellets, 0.5lb bag, Quantity of 40 ($5.50 each) 

Black Worms, 16 oz ($20) 

Tricaine-S (MS-222, Aquatic animal anesthesia), 1 kg bottle, Quantity 2 ($650/each) 

Tissue Preparation/Histology Supplies (Stains, Xylene, Anhydrous Ethanol) 

Pathology Core Immunohistochemistry Service: $25/slide x 3 slides/axolotl x 54 axolotls 

Equipment: 

Electronic von Frey Aesthesiometer 

Noldus EthoVision XT (Video Tracking Software) 

Dell Laptop (For Video Tracking Software) 

 

 

 

 

 

 

 

 

 

 

$2650 

$742 

 

$467 

 

 

 

 

 

 

 

$418 

 

$1020 

$140 

$356 

$230 

$840 

$350 

$345 

$220 

$20 

$1350 

$1500 

$4050 

 

$5990 

$9100 

$1000 

Personnel  

Name  Position Title Salary 
% 

Effort 
N/A 

N/A N/A N/A N/A N/A 

Other Expenses (Itemize by category)   

Travel: 

Travel allowance to AALAS National Meeting 
$1000 

Budget Total (USD): 

Funds Requested (USD): 

$31,788 

$31,788 
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1. Biographical Sketches.  Complete parts a-d for the principal investigator and co-

investigators. (2 pages maximum per person) 

Principal Investigator 

a. General Information 

Name: Tara Cotroneo, DVM, DACLAM 

Position Title: Sr. Clinical Veterinarian / Director, Veterinary Technical Service 

 

b. Education 

Add rows to the table below to list all post high school education including residency 

training. 

Institution/City Degree 

(if applicable) 

Date Completed 

(MM/DD/YYYY) 

Field of Study 

University of 

Pittsburgh 

BS 05/2004 Biology 

Western University 

of Health Sciences 

DVM 05/2008 DVM 

University of 

Michigan 

 07/01/2011 Laboratory 

Animal Medicine 

Residency 

 

c. Personal Statement of Qualifications  

Please identify each person’s role on the project and briefly summarize the experience 

and qualifications related to this role.  

My role in this project will be to oversee experimental design and clinical aspects of the 

project. I will be directly involved in performing or training individuals on the monitoring 

methods. My primary research interests are refinement of animal models and improving 

animal welfare in research a setting. This current project allows me to determine effective 

analgesic recommendations in a surgical model of regeneration. This information is 

currently not published in the literature and would provide significant refinement to 

axolotl pain management.  I have the background and training necessary to complete the 

proposed research study. I completed a three year residency in laboratory animal 

medicine which provided a solid background in both clinical veterinary care of a variety 

of laboratory animal species and primary research. During this time I worked on several 

projects which involved assessment of analgesic impact on research models. Specifically, 

I completed a project involving the impact of analgesics in a surgical mouse model of 

sepsis. I am board certified in laboratory animal medicine and have a broad knowledge of 

medical and surgical care for laboratory animal species. During my residency and as a 

clinical veterinarian I have provided veterinary care and reviewed IACUC protocols for 

amphibian and aquatic species including zebrafish, African clawed frogs (xenopus 

laevis), and Axolotls. My clinical veterinary background combined with my research 

experience and interest in pain management aligns well with my current proposed 

research project. 

d. Selected Peer-reviewed Publications 

AALAS encourages applicants to submit citations for up to 15 peer reviewed publications 

or manuscripts.  The applicant may choose to include selected publications based on 

importance to the field, recency, and or relevancy to the proposed research. Publications 
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should be cited per Comparative Medicine and JAALAS format 

(http://www.aalas.org/publications/cm_jaalas_info_for_au.aspx). 
Cotroneo TM, Hugunin KM, Shuster KA, Hwang HJ, Kakaraparthi BN, Nemzek-Hamlin JA. 2012. Effects 

of buprenorphine on a cecal ligation and puncture model in C57BL/6 mice. J Am Assoc Lab Anim Sci 51:357-

365. 

Cotroneo TM, Nemzek-Hamlin JA, Bayliss J, Su GL. 2012. Lipopolysaccharide binding protein inhibitory 

peptide alters hepatic inflammatory response post-hemorrhagic shock. Innate Immun 18:866-875. 

Cotroneo TM, Colby LA, Bergin IL. 2011. Hemophagocytic syndrome in a pancytopenic simian retrovirus-

infected male rhesus macaque (Macaca mulatta). Vet Pathol 48:1138-1143. 

 

 

Co-Investigator 

a. General Information 

Name: Gerald Hish, DVM 

Position Title: Sr. Surgical Service Veterinarian / Director, Veterinary Surgical Services 

 

b. Education 

Add rows to the table below to list all post high school education including residency 

training. 

Institution/City Degree 

(if applicable) 

Date Completed 

(MM/DD/YYYY) 

Field of Study 

VA Tech 

Blacksburg VA 

BS 05/1995 Wildlife Biology 

VMRCVM 

Blacksburg, VA 

DVM 05/1999 Veterinarian 

University of 

Michigan 

Ann Arbor, MI 

 06/30/2013 Laboratory 

Animal Medicine 

Residency 

 

c. Personal Statement of Qualifications  

My role in this project is to contribute to experimental design, perform and train 

laboratory personnel to complete quantitative and behavioral assessments, and provide 

veterinary care to the animals on this study.  I practiced companion animal and exotic 

animal clinical medicine for 11 years before completing a residency in laboratory animal 

medicine in 2013.  I have always had a strong interest in surgery, anesthesia and 

analgesia that I have been able to apply to both my clinical and research activities.  

Specifically, I have been involved with projects and have experience with several pain 

assessment modalities including grimace scales and scoring according to behavioral 

ethograms.  As an IACUC member and reviewer of animal use protocols, I am also very 

interested in exploring and documenting the impact that commonly used analgesics may 

have on animal surgical models and have published on this topic.  I believe that my 

clinical experience, research training, and demonstrated interest are a good fit with the 

currently proposed project. 

d. Selected Peer-reviewed Publications 

Hish GA, Diaz JA, Hawley AE, Myers DD, Lester PA. 2014. Effects of analgesic use 

on inflammation and hematology in a murine model of venous thrombosis. J Am Assoc 

Lab Anim Sci 53:485-93. 
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Hampton AL, Aslam MN, Naik MK, Bergin IL, Allen RM, Craig RA, Kunkel SL, 

Veerapaneni I, Paruchuri T, Patterson KA, Rothman ED, Hish GA, Varani J, Rush 

HG. 2015. Ulcerative dermatitis in C57BL/6NCrl mice on a low-fat or high-fat diet with 

or without a mineralized red-algae supplement. J Am Assoc Lab Anim Sci 54:487-96. 

Hampton AL, Hish GA, Aslam MN, Rothman ED, Bergin IL, Patterson KA, Naik 

M, Paruchuri T, Varani J, Rush HG. 2012. Progression of ulcerative dermatitis lesions 

in C57BL/6Crl mice and the development of a scoring system for dermatitis lesions. J 

Am Assoc Lab Anim Sci 51:586-93. 

Shuster KA, Hish GA, Selles LA,Chowdhury MA, Wiggins RC, Dysko RC, Bergin 

IL. 2013. Naturally occurring disseminated group B streptococcus infections in postnatal 

rats. Comp Med 63:55-61. 

 

Co-Investigator 

a. General Information 

Name: Jeremy T. Llaniguez, MS 

Position Title: MD/PhD Candidate, Graduate Research Assistant 

 

b. Education 

Add rows to the table below to list all post high school education including residency 

training. 

Institution/City Degree 

(if applicable) 

Date Completed 

(MM/DD/YYYY) 

Field of Study 

University of 

California, 

Berkeley (Berkeley, 

CA) 

BS 05/2001 
Mechanical 

Engineering 

Massachusetts 

Institute of 

Technology 

(Cambridge, MA) 

MS 09/2003 
Mechanical 

Engineering 

Wayne State 

University, School 

of Medicine 

(Detroit, MI) 

MD/PhD (In 

progress) 
05/2019 

Medicine/Biomedical 

Engineering 

 

c. Personal Statement of Qualifications  

Project Role: As a co-investigator, J. Llaniguez will perform all of the animal experiments 

listed in the experimental design. However, cageside assessments will be passed on to 

trained DLAR veterinary technicians (trained by J. Llaniguez) to record data in a blinded 

manner. 

Experience and qualifications: The axolotl is a novel model animal used in basic science 

research. Other than the DLAR procedures required by WSU Institutional Animal Care 

and Use Committee (IACUC) for working with animals, all of the surgical procedures have 

been developed by the co-investigator. For animal husbandry, the co-investigator visited 

the axolotl colony (Ambystoma Genetic Stock Center, AGSC) maintained at the University 
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of Kentucky for informal training. Additionally, the Axolotl Newsletter, a publication 

started in 1976 by the AGSC, was used to guide the development of axolotl care at WSU. 

 

d. Selected Peer-reviewed Publications 

None in the field of veterinary medicine. 

 

2. Disclosures of Business or Financial Interest in the Project (1 page maximum this 

section) 

None 

 

3. Support from Other Funding Agencies (1 page maximum this section) 

All funding thus far has been internal to WSU. Preliminary studies have been funded by the co-

investigator’s sponsor’s departmental funds. DLAR have helped with funding for animals, 

analgesics, and the video surveillance system. 
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 The Center for Disease Control’s National Center for Health Statistics data on mortality 

from diseases of the heart show the age-adjusted death rate has fallen from almost 600 deaths 

in the 1950s to just over 190 deaths per 100,000 U.S. residents today. With the recognized 

limitations of pharmacotherapy of myocardial infarction (MI), cell-based therapies have been 

undergoing rapid development and clinical testing. However, there is still no consensus about 

cell types, delivery routes, dosing and treatment schedules and pretreatment conditioning of 

cells prior to administration. Furthermore, a fundamental question remains unanswered about 

the reasons for the poor capacity for myocardial tissue regeneration in humans (mammals in 

general) as compared to robust myocardial regeneration in non-mammalian vertebrates (i.e., 

axolotl [Ambystoma mexicanum] and zebrafish [Danio rerio]). This lack in understanding the 

mechanisms behind the cell-cycle of cardiomyocytes and or cardiac progenitor cells, both during 

times of normal homeostasis and after pathologic insults, is central to the lack of progress in 
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stimulating the regeneration of cardiac tissue. To understand the differences in cardiac tissue 

response after an MI, developing a true model of ischemia-reperfusion injury in an animal known 

for epimorphic regeneration in the adult life stage like the axolotl will help reframe the direction 

of research in the field of tissue engineering and regenerative medicine in the realm of 

cardiology. To understand how the axolotl will respond to an MI, this research focuses on two 

Specific Aims: 

 Specific Aim 1: Develop a cardiac injury model in the axolotl that mimics the 

pathophysiology of a myocardial infarction in the mammalian heart. Cardiac injury models used 

to study heart regeneration in non-mammalian vertebrates known for robust healing responses 

have used novel approaches to induce major cardiomyocyte death. However, these novel injury 

models do not recapitulate the cellular signaling mechanisms present during ischemia and 

ischemia-reperfusion injuries. Thus, to study the epimorphic regeneration of heart tissue in 

axolotls, a novel model of inducing ischemia needs to be developed. 

 Specific Aim 2: Determine the spatiotemporal progression of axolotl cardiac tissue 

histopathology over time. Once a novel cardiac injury model produces the expected 

pathophysiological tissue response, chronic follow-up of surviving animals will help develop the 

spatiotemporal response to an MI. Data on functional recovery will require the development of 

regular, non-invasive techniques for monitoring heart function. After long-term recovery, 

appropriate harvesting of heart samples for histologic study is required to determine if the axolotl 

can completely regenerate cardiac injuries after an MI. 
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